Migraine is a destabilizing neuroinflammatory disorder characterized by recurrent headache attacks. Evidences show tumor necrosis factor (TNF)-α play a role in neuroimmunity pathogenesis of migraine. TNF-α increase prostanoid production, hyperexcitability of neurons, and nociceptor activation resulted in neuroinflammation and neurogenic pain. ω-3 fatty acids and curcumin exert neuroprotective and anti-inflammatory effects via several mechanisms including suppression of TNF-α gene expression and its serum levels. The aim of this study is an evaluation of synergistic effects of ω-3 fatty acids and nano-curcumin on TNF-α gene expression and serum levels in migraine patients. The present study performed as a clinical trial over a 2 month period included 74 episodic migraine patients in 4 groups and received ω-3 fatty acids, nano-curcumin, and combination of them or placebo. At the start and the end of the study, the gene expression of TNF-α and TNF-α serum levels was measured by real-time PCR and ELISA method, respectively. Our results showed that the combination of ω-3 fatty acids and nano-curcumin downregulated TNF-α messenger RNA (mRNA) significantly in a synergistic manner (P < 0.05). As relative to gene expression, a significant greater reduction in serum levels of TNF-α were observed in the combination group, but no significant differences in other groups. Supplementation with ω-3 fatty acids or nano-curcumin alone did not show significant reduction either in mRNA or serum levels of TNF-α. In addition, a much greater reduction in attack frequency was found in the combination group (P < 0.001). These findings indicated that ω-3 fatty acids and curcumin supplementation can be considered as a new promising approach in migraine management.
It seems that ω-3 fatty acids and curcumin supplementation can be considered a new promising target in migraine prevention.
Background: Migraine is a common neuroinflammatory disorder characterized by recurrent attacks of pain. Human and experimental models of migraine studies have demonstrated the role played by COX-2/ iNOS in migraine’s neuroinflammatory pathogenesis. COX-2 and iNOS are closely linked and both contribute to inflammation and neurogenic pain in the central nervous system. Omega- 3 fatty acids and curcumin, an active polyphenol of turmeric, have anti-inflammatory and neuroprotective effects through several mechanisms, including the suppression of COX-2 and iNOS gene expression, as well as their serum levels. The aim of the present study is to evaluate the nutrigenomic effects of ω-3 fatty acids, nano-curcumin, and a combination of the two, on neuroinflammation and clinical symptoms in migraine patients. Methods: This study reports the results of a clinical trial over a 2-month period, involving 74 episodic migraine patients who received ω-3 fatty acids, nano-curcumin, a combination of them, or a placebo. At the start and end of the study, the expression of COX-2/iNOS (in peripheral mononuclear blood cells isolated from patients) and COX-2/iNOS serum levels were measured, using real-time PCR and ELISA respectively. The frequency, severity and duration of pain attacks were also recorded. Results: The results of the present trial showed that ω-3 fatty acids and nano-curcumin can reinforce each other’s effects in the downregulation of COX-2/iNOS mRNA, as well as reduce their serum levels. In addition, the combination of ω-3 and nano-curcumin significantly reduced the frequency, severity and duration of headaches (P<0.05). Conclusion: These findings indicate that combination therapy of ω-3 fatty acids and nano-curcumin can be considered as a promising new approach in migraine prevention.
Aims:We hypothesised that omega-3 fatty acids would be an appropriate adjunct therapy for alleviating the inflammatory response and clinical manifestation in hospitalised patients with Covid-19 disease. Methods: This was a single-blind randomised controlled trial in Amir-Alam hospital in Tehran. Thirty adult men and women diagnosed with Covid-19 were allocated to either control group (receiving Hydroxychloroquine) or intervention group (receiving Hydroxychloroquine plus 2 grams of Docosahexaenoic acid [DHA] + Eicosapentaenoic acid [EPA]) for 2 weeks. Primary outcome of the intervention including C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) as well as clinical symptoms including body pain, fatigue, appetite and olfactory and secondary outcomes including liver enzymes were determined at the baseline and after omega-3 supplementation. Clinical signs were measured using self-reported questionnaires. There were commercial kits for determination of CRP and liver enzymes concentrations in the serum of patients. For determination of ESR automated haematology analyser was applied. The study of "Comparison of the effectiveness of omega-3 and Hydroxychloroquine on Inflammatory factors, liver enzymes and clinical symptoms in diabetic Covid-19 patients" was registered in Iranian Registry of Clinical Trials (IRCT) with ID number: IRCT20200511047399N1. Results:In comparison to control group, patients receiving omega-3 indicated favourable changes in all clinical symptoms except for olfactory (P < .001 for body pain and fatigue, P = .03 for appetite and P = .21 for olfactory). Reducing effects of omega-3 supplementation compared with control group were also observed in the levels of ESR and CRP after treatment (P < .001 for CRP and P = .02 for ESR).However, no between group differences in the liver enzymes serum concentrations were observed after supplementation (P > .05). Conclusion:Current observations are very promising and indicate that supplementation with moderate dosages of omega-3 fatty acids may be beneficial in the management of inflammation-mediated clinical symptoms in Covid-19 patients.
Vitamin A, considered to be an essential nutrient, has important actions in immunological responses and the central nervous system (CNS). Neuroimmunological functions of vitamin A are mediated through its active metabolite, retinoic acid (RA). In the CNS, RA contributes to regeneration and plasticity, while also playing a key role in enhancing tolerance and reducing inflammatory responses by regulating T cell, B cell and dendritic cell populations. However, evidence has indicated lower plasma levels of vitamin A in patients with multiple sclerosis (MS). Vitamin A deficiency leads to dysregulation of immune tolerance and pathogenic immune cell production in this disease. Vitamin A may ameliorate MS pathogenesis through numerous mechanisms including a reduction in inflammatory processes by re-establishing the balance between pathogenic (Th1, Th17, Th9) and immunoprotective cells (Th2, Tregs), modulating B cell and dendritic cell function as well as increasing tolerance of autoimmunity and regeneration in the CNS. Thus, the results from the current review suggest that vitamin A can be considered as a potential treatment in MS disease management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.