As one of the leading causes of mortality and disability worldwide, Acute Ischemic Stroke (AIS) occurs when the blood supply to the brain is suddenly interrupted because of a blocked artery. Within seconds of AIS onset, the brain cells surrounding the blocked artery die. The automated and precise prediction of AIS lesions plays a vital role in the treatment planning and prevention of further injuries. Unfortunately, the current standard AIS assessment method, which thresholds the 3D measurement maps extracted from Computed Tomography Perfusion (CTP) images, is not accurate enough. Due to this fact, in this article, we propose the imbalanced Temporal Deep Gaussian Process (iTDGP), a probabilistic model that can improve AIS lesions prediction by using baseline CTP time series. Our proposed model can effectively extract temporal information from the CTP time series and map it to the class labels of the brain's voxels. In addition, by using batch training and voxel-level analysis iTDGP can learn from a few patients and it is robust against imbalanced classes. Moreover, our model incorporates a post-processor capable of improving prediction accuracy using spatial information. Our comprehensive experiments, on the ISLES 2018 and the University of Alberta Hospital (UAH) datasets (including 63 and 100 patients respectively), show that iTDGP performs better than state-of-the-art AIS lesion predictors, obtaining the (cross-validation) Dice score of 71.42% and 65.37% with a significant p<0.05, respectively.
Artificial Neural Network (ANN) is employed to predict the long-term Caspian Sea level (CSL). 114-year observed CSL data (1900-2014) and the precipitation and temperature of historical and future scenarios of Coupled Model Intercomparison Phase 6 (CMIP6) are used to predict the future fluctuations of CSL (2015-2050). The values of the statistical indices in training, validating and testing periods (1900-2014) indicate the efficiency of the ANN in reconstruction of the CSL. Considering the outputs of different climate change projections (CMIP6) and excluding the human interventions, the study predicts the CSL fluctuation range of -28 m to -26m until 2050.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/Kfj-gr65TR8
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.