Abstract. Linked data continues to grow at a rapid rate, but a limitation of a lot of the data that is being published is the lack of a semantic description. There are tools, such as D2R, that allow a user to quickly convert a database into RDF, but these tools do not provide a way to easily map the data into an existing ontology. This paper presents a semiautomatic approach to map structured sources to ontologies in order to build semantic descriptions (source models). Since the precise mapping is sometimes ambiguous, we also provide a graphical user interface that allows a user to interactively refine the models. The resulting source models can then be used to convert data into RDF with respect to a given ontology or to define a SPARQL end point that can be queried with respect to an ontology. We evaluated the overall approach on a variety of sources and show that it can be used to quickly build source models with minimal user interaction.
Accessing and utilizing enterprise or Web data that is scattered across multiple data sources is an important task for both applications and users. Ontology-based data integration, where an ontology mediates between the raw data and its consumers, is a promising approach to facilitate such scenarios. This approach crucially relies on useful mappings to relate the ontology and the data, the latter being typically stored in relational databases. A number of systems to support the construction of such mappings have recently been developed. A generic and effective benchmark for reliable and comparable evaluation of the practical utility of such systems would make an important contribution to the development of ontology-based data integration systems and their application in practice. We have proposed such a benchmark, called RODI. In this paper, we present a new version of RODI, which significantly extends our previous benchmark, and we evaluate various systems with it. RODI includes test scenarios from the domains of scientific conferences, geographical data, and oil and gas exploration. Scenarios are constituted of databases, ontologies, and queries to test expected results. Systems that compute relational-to-ontology mappings can be evaluated using RODI by checking how well they can handle various features of relational schemas and ontologies, and how well the computed mappings work for query answering. Using RODI, we conducted a comprehensive evaluation of seven systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.