A topology optimization (TO) method is used to develop new and efficient unit cells to be used in additively manufactured porous lattice structures. Two types of unit cells including solid and thin-walled shell-type ones are introduced for generating the desired regular and functionally graded (FG) lattice structures. To evaluate structural stiffness and crushing behavior of the proposed lattice structures, their mechanical properties, and energy absorption parameters have been calculated through implementing finite element (FE) simulations on them. To validate the simulations, two samples were fabricated by a stereolithography (SLA) machine. Besides, the effects of geometrical parameters and optimizing scheme of the unit cells on the mechanical properties of the proposed structures are studied. Consequently, energy absorption parameters have been calculated and compared for both the solid and thin-walled lattice structures to evaluate their ability in energy absorption. It was found in general that for the solid lattice structures, the mechanical properties, and the crushing parameters are directly affected by porosity though in shell-type ones superior mechanical properties could be achieved even for a smaller proportion of material usage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.