Attitude control of a novel regional truss-braced wing (TBW) aircraft with low stability characteristics is addressed in this paper using Reinforcement Learning (RL). In recent years, RL has been increasingly employed in challenging applications, particularly, autonomous flight control. However, a significant predicament confronting discrete RL algorithms is the dimension limitation of the state-action table and difficulties in defining the elements of the RL environment. To address these issues, in this paper, a detailed mathematical model of the mentioned aircraft is first developed to shape an RL environment. Subsequently, Q-learning, the most prevalent discrete RL algorithm, will be implemented in both the Markov Decision Process (MDP) and Partially Observable Markov Decision Process (POMDP) frameworks to control the longitudinal mode of the proposed aircraft. In order to eliminate residual fluctuations that are a consequence of discrete action selection, and simultaneously track variable pitch angles, a Fuzzy Action Assignment (FAA) method is proposed to generate continuous control commands using the trained optimal Q-table. Accordingly, it will be proved that by defining a comprehensive reward function based on dynamic behavior considerations, along with observing all crucial states (equivalent to satisfying the Markov Property), the air vehicle would be capable of tracking the desired attitude in the presence of different uncertain dynamics including measurement noises, atmospheric disturbances, actuator faults, and model uncertainties where the performance of the introduced control system surpasses a well-tuned Proportional–Integral–Derivative (PID) controller.
A detailed literature review is performed in this study to address solutions for the full-body design and control of an aerial manipulator. Deep Reinforcement Learning methods are growing to be utilized recently to cope with various uncertainties. The pros and cons of these theories will be explained as well as introducing the advantages of Fuzzy Reinforcement Learning methods. State-of-the-Art, possible challenges, potential approaches, and a summary of desired precision devices are discussed in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.