Liver injury caused by drugs, viruses, and toxins that impede the proliferation of mature hepatocytes results in the activation of hepatic progenitor cells (HPCs), which then participate in the restoration of the damaged liver tissue. HPCs are known to be bipotential cells, capable of forming both hepatocytes and cholangiocytes when regeneration by mature hepatocytes is plagued or impaired. Both clinical studies of liver disease and certain experimental animal models of liver injury conspicuously show the presence of activated HPC response and proliferation. However, in addition to regeneration, the proliferation of HPCs also determines the appearance of a ductular reaction that has been correlated with progressive portal fibrosis, suggesting intricate links between activation of HPCs and fibrogenesis. The current review highlights the role of activated HPCs in both hepatic regeneration and fibrosis during liver injury.
Studies have demonstrated that aging is associated with a substantial decline in numbers and angiogenic activity of endothelial progenitor cells (EPCs). In view of senescence being an important regulator of age-related cell survival and function, in the current study, we correlated EPCs numbers and functions with their senescence status and mechanisms in young and elderly subjects. Healthy young subjects (n = 30, below 60 y) and old subjects (n = 30, equal to or above 60 y) participated in the study. Subjects had no significant disease or risk factors of disease and aging was the only risk factor in the aged subjects. Enumeration of CD34-vegfr2 dual positive EPCs was performed. The ex vivo culture of EPCs was done to study colony formation, migration, and senescence-associated beta-galactosidase activity. The expression of cell cycle and senescence regulatory proteins including, p53, p21, and sirtuin 1 (SIRT1), a deacetylase protein was studied in cultured EPCs by RT-PCR and immunofluorescence staining. In vivo proliferation, ex vivo colonies, migration, and secretory ability of EPCs was significantly higher in young subjects than that in elderly subjects. EPCs in old subjects showed enhanced senescence and decreased expression of SIRT1 in comparison to that observed in young subjects. An inhibition of SIRT1 in EPCs of young subjects led to significant increase in senescence and reduction of cell differentiation. The study suggests that EPCs have decreased proliferation and functions in aged subjects due to increased senescence which may be attributable to decreased expression of SIRT1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.