β-glucans are the dietary nutrients present in oats, barley, algae, and mushrooms. The macromolecules are well known for their immune-modulatory activity; however, how the human gut bacteria digest them is vaguely understood. In this study, Bacteroides uniformis JCM 13288 T was found to grow on laminarin, pustulan, and porphyran. We sequenced the genome of the strain, which was about 5.05 megabase pairs and contained 4868 protein-coding genes. On the basis of growth patterns of the bacterium, two putative polysaccharide utilization loci for β-glucans were identified from the genome, and associated four putative genes were cloned, expressed, purified, and characterized. Three glycoside hydrolases (GHs) that were endo-acting enzymes (BuGH16, BuGH30, and BuGH158), and one which was an exo-acting (BuGH3) enzyme. The BuGH3, BuGH16, and BuGH158 can cleave linear exo/endo-β-1-3 linkages while BuGH30 can digest endo-β-1-6 linkages. BuGH30 and BuGH158 were further explored for their roles in digesting β-glucans and generation of oligosaccharides, respectively. The BuGH30 predominately found to cleave long chain β-1-6 linked glucans, and obtained final product was gentiobiose. The BuGH158 used for producing oligosaccharides varying from degree of polymerization 2 to 7 from soluble curdlan. We demonstrated that these oligosaccharides can be utilized by gut bacteria, which either did not grow or poorly grew on laminarin. Thus, B. uniformis JCM 13288 T is not only capable of utilizing β-glucans but also shares these glycans with human gut bacteria for potentially maintaining the gut microbial homeostasis.
In advanced chronic liver disease (CLD), the translocation of intestinal bacteria and the resultant increase of proinflammatory cytokines in the splanchnic and systemic circulation may contribute to the progression of fibrosis. We therefore speculated that fibrosis and portal hypertension (PHT) would be attenuated in a mouse model of limited intestinal colonization with altered Schaedler flora (ASF) compared to a more complex colonization with specific pathogen‐free (SPF) flora. We induced liver fibrosis in ASF and SPF mice by common bile duct ligation (BDL) or by carbon tetrachloride (CCl4) treatment. We then measured portal pressure (PP), portosystemic shunts (PSSs), and harvested tissues for further analyses. There were no differences in PP between sham‐treated ASF or SPF mice. After BDL or CCl4 treatment, PP, PSSs, and hepatic collagen deposition increased in both groups. However, the increase in PP and the degree of fibrosis was significantly higher in ASF than SPF mice. Expression of fibrotic markers α‐smooth muscle actin, desmin, and platelet‐derived growth factor receptor β were significantly higher in ASF than SPF mice. This was associated with higher activation of hepatic immune cells (macrophages, neutrophils) and decreased expression of the intestinal epithelial tight junction proteins (claudin‐1, occludin‐1). In 2 models of advanced CLD, SPF mice presented significantly attenuated liver injury, fibrosis, and PHT compared to ASF mice. In contrast to our hypothesis, these findings suggest that a complex intestinal microbiota may play a “hepatoprotective” role.—Moghadamrad, S., Hassan, M., McCoy, K. D., Kirundi, J., Kellmann, P., De Gottardi, A. Attenuated fibrosis in specific pathogen‐free microbiota in experimental cholestasis‐ and toxin‐induced liver injury. FASEB J. 33, 12464–12476 (2019). http://www.fasebj.org
Intestinal microbiota regulates multiple host metabolic and immunological processes. Consequently, any difference in its qualitative and quantitative composition is susceptible to exert significant effects, in particular along the gut-liver axis. Indeed, recent findings suggest that such changes modulate the severity and the evolution of a wide spectrum of hepatobiliary disorders. However, the mechanisms linking intestinal microbiota and the pathogenesis of liver disease remain largely unknown. In this work, we investigated how a distinct composition of the intestinal microbiota, in comparison with germ-free conditions, may lead to different outcomes in an experimental model of acute cholestasis. Acute cholestasis was induced in germ-free (GF) and altered Schaedler's flora (ASF) colonized mice by common bile duct ligation (BDL). Studies were performed 5 days after BDL and hepatic histology, gene expression, inflammation, lipids metabolism, and mitochondrial functioning were evaluated in normal and cholestatic mice. Differences in plasma concentration of bile acids (BA) were evaluated by UHPLC-HRMS. The absence of intestinal microbiota was associated with significant aggravation of hepatic bile infarcts after BDL. At baseline, we found the absence of gut microbiota induced altered expression of genes involved in the metabolism of fatty and amino acids. In contrast, acute cholestasis induced altered expression of genes associated with extracellular matrix, cell cycle, autophagy, activation of MAPK, inflammation, metabolism of lipids, and mitochondrial functioning pathways. Ductular reactions, cell proliferation, deposition of collagen 1 and autophagy were increased in the presence of microbiota after BDL whereas GF mice were more susceptible to hepatic inflammation as evidenced by increased gene expression levels of osteopontin, interleukin (IL)-1β and activation of the ERK/MAPK pathway as compared to ASF colonized mice. Additonally, we found that the presence of microbiota provided partial protection to the mitochondrial functioning and impairment in the fatty acid metabolism after BDL. The concentration of the majority of BA markedly increased after BDL in both groups without remarkable differences according to the hygiene status of the mice. In conclusion, acute cholestasis induced more severe liver injury in GF mice compared to mice with limited intestinal bacterial colonization. This protective effect was associated with different hepatic gene expression profiles mostly related to tissue repair, metabolic and immune functions. Our findings suggest that microbial-induced differences may impact the course of cholestasis and modulate liver injury, offering a background for novel therapies based on the modulation of the intestinal microbiota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.