The mechanisms underlying transthyretin-related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49–127 truncated protomer. Here, we investigate the mechanism of cleavage and release of the 49–127 fragment from the prototypic S52P variant, and we show that the proteolysis/fibrillogenesis pathway is common to several amyloidogenic variants of transthyretin and requires the action of biomechanical forces provided by the shear stress of physiological fluid flow. Crucially, the non-amyloidogenic and protective T119M variant is neither cleaved nor generates fibrils under these conditions. We propose that a mechano-enzymatic mechanism mediates transthyretin amyloid fibrillogenesis in vivo. This may be particularly important in the heart where shear stress is greatest; indeed, the 49–127 transthyretin fragment is particularly abundant in cardiac amyloid. Finally, we show that existing transthyretin stabilizers, including tafamidis, inhibit proteolysis-mediated transthyretin fibrillogenesis with different efficiency in different variants; however, inhibition is complete only when both binding sites are occupied.
Background: We recently discovered the first natural human β2-microglobulin variant, D76N, as an amyloidogenic protein.Results: Fluid flow on hydrophobic surfaces triggers its amyloid fibrillogenesis. The α-crystallin chaperone inhibits variant-mediated co-aggregation of wild type β2-microglobulin.Conclusion: These mechanisms likely reflect in vivo amyloidogenesis by globular proteins in general.Significance: Our results elucidate the molecular pathophysiology of amyloid deposition.
Neurodegenerative disorders are strongly linked to protein misfolding, and crucial to their explication is a detailed understanding of the underlying structural rearrangements and pathways that govern the formation of misfolded states. Here we use singlemolecule optical tweezers to monitor misfolding reactions of the human neuronal calcium sensor-1, a multispecific EF-hand protein involved in neurotransmitter release and linked to severe neurological diseases. We directly observed two misfolding trajectories leading to distinct kinetically trapped misfolded conformations. Both trajectories originate from an on-pathway intermediate state and compete with native folding in a calcium-dependent manner. The relative probability of the different trajectories could be affected by modulating the relaxation rate of applied force, demonstrating an unprecedented real-time control over the free-energy landscape of a protein. Constant-force experiments in combination with hidden Markov analysis revealed the free-energy landscape of the misfolding transitions under both physiological and pathological calcium concentrations. Remarkably for a calcium sensor, we found that higher calcium concentrations increased the lifetimes of the misfolded conformations, slowing productive folding to the native state. We propose a rugged, multidimensional energy landscape for neuronal calcium sensor-1 and speculate on a direct link between protein misfolding and calcium dysregulation that could play a role in neurodegeneration.protein folding | NCS-1 | off-pathway intermediate | conformational dynamics | optical trapping
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.