In today's world, social media provides a valuable platform for conveying expressions, thoughts, point-of-views, and communication between people, from diverse walks of life. There are currently approximately 2.62 billion active users' social networks, and this is expected to exceed 3 billion users by 2021. Social networks used to share ideas and information, allowing interaction across communities, organizations, and so forth. Recent studies have found that the typical individual uses these platforms between 2 and 3 h a day. This creates a vast and rich source of data that can play a critical role in decisionmaking for companies, political campaigns, and administrative management and welfare. Twitter is one of the important players in the social network arena. Every scale of companies, celebrities, different types of organizations, and leaders use Twitter as an instrument for communicating and engaging with their followers. In this paper, we build upon the idea that Twitter data can be analyzed for crowd source sensing and decision-making. In this paper, a new framework is presented that uses Twitter data and performs crowd source sensing. For the proposed framework, real-time data are obtained and then analyzed for emotion classification using a lexicon-based approach. Previous work has found that weather, understandably, has an impact on mood, and we consider these effects on crowd mood. For the experiments, weather data are collected through an application-programming-interface in R and the impact of weather on human sentiments is analyzed. Visualizations of the data are presented and their usefulness for policy/ decision makers in different applications is discussed.INDEX TERMS Big data, crowd-sourced sensing, lexicon-based approach, Twitter, social networks.
Multiprotocol label switched (MPLS) networks were introduced to enhance the network`s service provisioning and optimize its performance using multiple protocols along with label switched based networking technique. With the addition of traffic engineering entity in MPLS domain, there is a massive increase in the networks resource management capability with better quality of services (QoS) provisioning for end users. Routing protocols play an important role in MPLS networks for network traffic management, which uses exact and approximate algorithms. There are number of artificial intelligence-based optimization algorithms which can be used for the optimization of traffic engineering in MPLS networks. The paper presents an optimization model for MPLS networks and proposed dolphin-echolocation algorithm (DEA) for optimal path computation. For Network with different nodes, both algorithms performance has been investigated to study their convergence towards the production of optimal solutions. Furthermore, the DEA algorithm will be compared with the bat algorithm to examine their performance in MPLS network optimization. Various parameters such as mean, minimum /optimal fitness function values and standard deviation.
Particle swarm optimization (PSO) is a swarm-based optimization technique capable of solving different categories of optimization problems. Nevertheless, PSO has a serious exploration issue that makes it a difficult choice for multi-objectives constrained optimization problems (MCOP). At the same time, Multi-Protocol Label Switched (MPLS) and its extended version Generalized MPLS, has become an emerging network technology for modern and diverse applications. Therefore, as per MPLS and Generalized MPLS MCOP needs, it is important to find the Pareto based optimal solutions that guarantee the optimal resource utilization without compromising the quality of services (QoS) within the networks. The paper proposes a novel version of PSO, which includes a modified version of the Elitist learning Strategy (ELS) in PSO that not only solves the existing exploration problem in PSO, but also produces optimal solutions with efficient convergence rates for different MPLS/ GMPLS network scales. The proposed approach has also been applied with two objective functions; the resource provisioning and the traffic load balancing costs. Our simulations and comparative study showed improved results of the proposed algorithm over the well-known optimization algorithms such as standard PSO, Adaptive PSO, Bat and Dolphin algorithm.
-Introduction of modern and diverse applications in telecommunication field has raised challenges in networking area regarding efficient use of network resources and with optimizing performance. Therefore MPLS/GMPLS (Generalized multiprotocol label switching) networks were introduced to provide a better quality of service to meet users' requirements as well as to optimize network resources. GMPLS networks use traffic engineering techniques for more efficient communication within the network and help to optimize network resources. This paper proposes BAT inspired metaheuristic algorithm for selecting an efficient route in MPLS/ GMPLS networks. In our investigation we considered routing costs as an objective function with goal to minimize it. The paper uses BAT algorithm with various levels of loudness parameter. The simulation results show performance improvements in MPLS/GMPLS networks of different size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.