HighlightsmiR-34a was decreased in both glioma and glioma stem cell-lines as compared to normal brain tissues.Glioma stem cell-lines HNGC-2 and NSG-K16 possess the mesenchymal glioblastoma phenotype.miR-34a over-expression in these cell lines decreased their proliferative and migratory potential, and induced apoptosis.Rictor, a part of the mTORC2 complex, is a novel target for miR-34a in glioma stem cells.The tumor suppressive function of miR-34a is mediated via Rictor and affects the AKT/mTOR pathway and Wnt signaling.
Surface engineering of nanocarriers allows fine-tuning of their interactions with biological organisms, potentially forming the basis of devices for the monitoring of intracellular events or for intracellular drug delivery. In this context, biodegradable nanocarriers or nanocapsules capable of carrying bioactive molecules or drugs into the mitochondrial matrix could offer new capabilities in treating mitochondrial diseases. Nanocapsules with a polymeric backbone that undergoes programmed rupture in response to a specific chemical or enzymatic stimulus with subsequent release of the bioactive molecule or drug at mitochondria would be particularly attractive for this function. With this goal in mind, we have developed biologically benign nanocapsules using polyurethane-based, polymeric backbone that incorporates repetitive ester functionalities. The resulting nanocapsules are found to be highly stable and monodispersed in size. Importantly, a new non-isocyanate route is adapted for the synthesis of these non-isocyanate polyurethane nanocapsules (NIPU). The embedded ester linkages of these capsules' shells have facilitated complete degradation of the polymeric backbone in response to a stimulus provided by an esterase enzyme. Hydrophilic payloads like rhodamine or doxorubicin can be loaded inside these nanocarriers during their synthesis by an interfacial polymerization reaction. The postgrafting of the nanocapsules with phosphonium ion, a mitochondria-targeting receptor functionality, has helped us achieve the site-specific release of the drug. Co-localization experiments with commercial mitotracker green as well as mitotracker deep red confirmed localization of the cargo in mitochondria. Our in vitro studies confirm that specific release of doxorubicin within mitochondria causes higher cytotoxicity and cell death compared to free doxorubicin. Endogenous enzyme triggered nanocapsule rupture and release of the encapsulated dye is also demonstrated in a zebrafish model. The results of this proof-of-concept study illustrate that NIPU nanocarriers can provide a site-specific delivery vehicle and improve the therapeutic efficacy of a drug or be used to produce organelle-specific imaging studies.
Glioblastoma (GBM) is one of the most aggressive and lethal types of brain tumor. Despite the advancements in conventional or targeted therapies, median survival of GBM patients is less than 12 months. Amongst various signaling pathways aberrantly activated in glioma, active Wnt/β-catenin signaling pathway is one of the crucial oncogenic players. β-catenin, an important mediator of Wnt signaling pathway, gets phosphorylated by GSK3β complex. Phosphorylated β-catenin is specifically recognized by β-Trcp1, a F-box/WD40-repeat protein and with the help of Skp1 it plays a central role in recruiting phosphorylated β-catenin for degradation. In GBM, expression of β-TrCP1 and its affinity for β catenin is reported to be very low. Hence, we investigated whether any other members of the E3 ubiquitin ligase family could be involved in degradation of nuclear β-catenin. We here report that FBXO16, a component of SCF E3 ubiquitin ligase complex, is an interacting protein partner for β-catenin and mediates its degradation. Next, we show that FBXO16 functions as a tumor suppressor in GBM. Under normal growth conditions, FBXO16 proteasomally degrades β-catenin in a GSK-3β independent manner. Specifically, the C-terminal region of FBXO16 targets the nuclear β-catenin for degradation and inhibits TCF4/LEF1 dependent Wnt signaling pathway. The nuclear fraction of β-catenin undergoes K-48 linked poly-ubiquitination in presence of FBXO16. In summary, we show that due to low expression of FBXO16, the β-catenin is not targeted in glioma cells leading to its nuclear accumulation resulting in active Wnt signaling. Activated Wnt signaling potentiates the glioma cells toward a highly proliferative and malignant state.
Stimuli responsive controlled release from liposome based vesicles is a promising strategy for the site specific delivery of drugs. Herein, we report the design of pH sensitive coiled coils and their incorporation into the liposome as triggers for the controlled release of encapsulated drugs. The designed coiled coil peptides with the incorporation of environment sensitive fluorescent amino acids were found to be stable at physiological pH and unstructured while changing the pH of the environment to either acidic or basic. This pH dependent conformational switch of the coiled-coil polypeptides was exploited as triggers for the enhanced release of the encapsulated drug molecules from liposomes. The SEM, DLS and TEM analysis revealed the uniform morphology of the peptide liposome hybrid vesicles. Further, the drug encapsulated liposome internalization experiments with cancer cells revealed the enhanced release and accumulation of drugs in the acidic lysosomal compartments in comparison with liposomes without coiled coils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.