This manuscript discusses the difficulties with magnetic position and orientation (MPO) system design and proposes a general method for finding optimal layouts. The formalism introduces a system quality measure through state separation and reduces the question “How to design an MPO system?” to a global optimization problem. The latter is then solved by combining differential evolution algorithms with magnet shape variation based on analytical computations of the field. The proposed formalism is then applied to study possible realizations of continuous three-axis joystick motion tracking, realized with just a single magnet and a single 3D magnetic field sensor. The computations show that this is possible when a specific design condition is fulfilled and that large state separations as high as 1mT/∘ can be achieved under realistic conditions. Finally, a comparison to state-of-the-art design methods is drawn, computation accuracy is reviewed critically, and an experimental validation is presented.
III-V solid solutions are sensitive to growth conditions due to their stochastic nature. The highly crystalline thin films require a profound understanding of the material properties and reliable means of their determination. In this work, we have investigated the Raman spectral fingerprint of Al1−xScxN thin films with Sc concentrations x = 0, 0.14, 0.17, 0.23, 0.32, and 0.41, grown on Al2O3(0001) substrates. The spectra show softening and broadening of the modes related to the dominant wurtzite phase with increasing Sc content, in agreement with the corresponding XRD results. We investigated the primary scattering mechanism responsible for the immense modes’ linewidths by comparing the average grain sizes to the phonon correlation length, indicating that alloying augments the point defect density. The low-frequency Raman bands were attributed to the confined spherical acoustic modes in the co-forming ScN nanoparticles. Temperature-dependent Raman measurements enabled the temperature coefficient of the E2(high) mode to be determined for all Sc concentrations for the precise temperature monitoring in AlScN-based devices.
The field of mid-infrared (MIR) plasmonics has shown great potential applications in spectroscopic sensing, infrared light sources and detectors. MIR plasmonic materials that are compatible with common fabrication processes may enable cost-effective and reliable plasmonic device platforms. In this work, we examined aluminium metal (Al), gold-tin (AuSn) and titanium-tungsten (TiW) alloys regarding their usability for surface plasmon polariton (SPP) excitation in the MIR regime using a grating configuration. The angle dependence and the influence of varying depths of gratings were numerically and experimentally studied for the chosen materials. The structures were fabricated on eight-inch silicon (Si) substrates and characterized with a free-beam reflection measurement setup in the MIR regime. The fabricated gratings show narrow resonance dips, which are in good agreement with the simulations, revealing that Al, AuSn and TiW alloys are reliable plasmonic materials for MIR plasmonic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.