Interferon regulatory factor 2 binding protein-like (IRF2BPL) encodes a member of the IRF2BP family of transcriptional regulators. Currently the biological function of this gene is obscure, and the gene has not been associated with a Mendelian disease. Here we describe seven individuals who carry damaging heterozygous variants in IRF2BPL and are affected with neurological symptoms. Five individuals who carry IRF2BPL nonsense variants resulting in a premature stop codon display severe neurodevelopmental regression, hypotonia, progressive ataxia, seizures, and a lack of coordination. Two additional individuals, both with missense variants, display global developmental delay and seizures and a relatively milder phenotype than those with nonsense alleles. The IRF2BPL bioinformatics signature based on population genomics is consistent with a gene that is intolerant to variation. We show that the fruit-fly IRF2BPL ortholog, called pits (protein interacting with Ttk69 and Sin3A), is broadly detected, including in the nervous system. Complete loss of pits is lethal early in development, whereas partial knockdown with RNA interference in neurons leads to neurodegeneration, revealing a requirement for this gene in proper neuronal function and maintenance. The identified IRF2BPL nonsense variants behave as severe loss-of-function alleles in this model organism, and ectopic expression of the missense variants leads to a range of phenotypes. Taken together, our results show that IRF2BPL and pits are required in the nervous system in humans and flies, and their loss leads to a range of neurological phenotypes in both species.
BackgroundWe previously demonstrated the therapeutic benefits of pentosan polysulfate (PPS) in a rat model of mucopolysaccharidosis (MPS) type VI. Reduction of inflammation, reduction of glycosaminoglycan (GAG) storage, and improvement in the skeletal phenotype were shown. Herein, we evaluate the long-term safety and therapeutic effects of PPS in a large animal model of a different MPS type, MPS I dogs. We focused on the arterial phenotype since this is one of the most consistent and clinically significant features of the model.Methodology/Principal FindingsMPS I dogs were treated with daily oral or biweekly subcutaneous (subQ) PPS at a human equivalent dose of 1.6 mg/kg for 17 and 12 months, respectively. Safety parameters were assessed at 6 months and at the end of the study. Following treatment, cytokine and GAG levels were determined in fluids and tissues. Assessments of the aorta and carotid arteries also were performed. No drug-related increases in liver enzymes, coagulation factors, or other adverse effects were observed. Significantly reduced IL-8 and TNF-alpha were found in urine and cerebrospinal fluid (CSF). GAG reduction was observed in urine and tissues. Increases in the luminal openings and reduction of the intimal media thickening occurred in the carotids and aortas of PPS-treated animals, along with a reduction of storage vacuoles. These results were correlated with a reduction of GAG storage, reduction of clusterin 1 staining, and improved elastin integrity. No significant changes in the spines of the treated animals were observed.ConclusionsPPS treatment led to reductions of pro-inflammatory cytokines and GAG storage in urine and tissues of MPS I dogs, which were most evident after subQ administration. SubQ administration also led to significant cytokine reductions in the CSF. Both treatment groups exhibited markedly reduced carotid and aortic inflammation, increased vessel integrity, and improved histopathology. We conclude that PPS may be a safe and useful therapy for MPS I, either as an adjunct or as a stand-alone treatment that reduces inflammation and GAG storage.
BACKGROUND Intrathecal (IT) enzyme replacement therapy with recombinant human α-l-iduronidase (rhIDU) has been studied to treat glycosaminoglycan storage in the central nervous system of mucopolysaccharidosis (MPS) I dogs and is currently being studied in MPS I patients. METHODS We studied the immune response to IT rhIDU in MPS I subjects with spinal cord compression who had been previously treated with intravenous rhIDU. We measured concentrations of specific antibodies and cytokines in serum and cerebrospinal fluid collected prior to monthly IT rhIDU infusions and compared serologic findings to clinical adverse event reports to establish temporal correlations with clinical symptoms. RESULTS Five MPS I subjects participating in IT rhIDU trials were studied. One subject with symptomatic spinal cord compression had evidence of an inflammatory response with cerebrospinal fluid leukocytosis, elevated IL-5 and elevated IgG. This subject also complained of lower back pain and buttock parasthesias temporally correlated with serologic abnormalities. Clinical symptoms were managed with oral medication and serologic abnormalities resolved though this subject withdrew from the trial to have spinal decompressive surgery. CONCLUSION IT rhIDU was generally well tolerated in the subjects studied though one subject had moderate to severe clinical symptoms and serologic abnormalities consistent with an immune response.
Antibodies against recombinant proteins can significantly reduce their effectiveness in unanticipated ways. We evaluated the humoral response of mice with the lysosomal storage disease mucopolysaccharidosis type I treated with weekly intravenous recombinant human alpha-l-iduronidase (rhIDU). Unlike patients, the majority of whom develop antibodies to recombinant human alpha-l-iduronidase, only approximately half of the treated mice developed antibodies against recombinant human alpha-l-iduronidase and levels were low. Serum from antibody-positive mice inhibited uptake of recombinant human alpha-l-iduronidase into human fibroblasts by partial inhibition compared to control serum. Tissue and cellular distributions of rhIDU were altered in antibody-positive mice compared to either antibody-negative or naive mice, with significantly less recombinant human alpha-l-iduronidase activity in the heart and kidney in antibody-positive mice. In the liver, recombinant human alpha-l-iduronidase was preferentially found in sinusoidal cells rather than in hepatocytes in antibody-positive mice. Antibodies against recombinant human alpha-l-iduronidase enhanced uptake of recombinant human alpha-l-iduronidase into macrophages obtained from MPS I mice. Collectively, these results imply that a humoral immune response against a therapeutic protein can shift its distribution preferentially into macrophage-lineage cells, causing decreased availability of the protein to the cells that are its therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.