Mutations in the human ALMS1 gene are responsible for Alström syndrome, a disorder in which key metabolic and endocrinological features include childhood-onset obesity, metabolic syndrome, and diabetes, as well as infertility. ALMS1 localizes to the basal bodies of cilia and plays a role in intracellular trafficking, but the biological functions of ALMS1 and how these relate to the pathogenesis of obesity, diabetes, and infertility remain unclear. Here we describe a new mouse model of Alström syndrome, fat aussie, caused by a spontaneous mutation in the Alms1 gene. Fat aussie (Alms1 foz/foz) mice are of normal weight when young but, by 120 d of age, they become obese and hyperinsulinemic. Diabetes develops in Alms1 foz/foz mice accompanied by pancreatic islet hyperplasia and islet cysts. Female mice are fertile before the onset of obesity and metabolic syndrome; however, male fat aussie mice are sterile due to a progressive germ cell loss followed by an almost complete block of development at the round-to-elongating spermatid stage of spermatogenesis. In conclusion, Alms1 foz/foz mouse is a new animal model in which to study the pathogenesis of the metabolic and fertility defects of Alström syndrome, including the role of ALMS1 in appetite regulation, pathogenesis of the metabolic syndrome, pancreatic islet physiology, and spermatogenesis.
No abstract
Sertoli cell proliferation in the rat is completed by Days 15-20 postnatally. Thyroid hormones appear to regulate the duration of Sertoli cell proliferation, affecting adult Sertoli cell number and hence the capacity of the testis to produce sperm. In the present study, a combination of immunohistochemistry, immunoblot analysis, and reverse transcription-polymerase chain reaction was used to demonstrate the expression pattern of thyroid hormone receptors (TR) in the juvenile and adult rat testis. The results indicated that TRalpha1 was expressed in proliferating Sertoli cell nuclei, its expression decreasing coincident with the cessation of proliferation. TRalpha2, TRalpha3, and TRbeta1 mRNAs were expressed at low levels during development; however, the corresponding protein was not detected by immunoblot analysis. In addition, TRalpha1 was found to be expressed in germ cells from intermediate spermatogonia to mid-cycle pachytene spermatocytes. Immunohistochemistry also demonstrated TR expression in a subset of interstitial cells. The demonstration of TR expression in germ cells undergoing spermatogenic differentiation suggests a possible role for thyroid hormones in the adult testis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.