Two models exist for the orientational distribution of the long molecular axes in smectic-A liquid crystals: the conventional unimodal distribution and the "cone-shaped" de Vries distribution. The de Vries hypothesis provides a plausible picture of how, at a molecular level, a first-order Sm-A to Sm-C * transition may occur, especially if there is little or no concomitant shrinkage of the layer spacing. This work investigates two materials with such transitions: C7 and TSiKN65. The azimuthal distribution of in-layer directors is probed using IR and polarized Raman spectroscopy, which allows us to obtain orientational order parameters. In C7, we observe a discontinuous change in the order parameter, the magnitude of which is small compared with the corresponding change in the in-layer director tilt angle ⌰. Assuming that the smectic-A liquid crystal is of the de Vries type, we calculate the ⌰ required to reproduce the apparent order parameter ͗P 2 ͘ app , obtained from IR, by using the true order parameter ͗P 2 ͘, obtained from polarized Raman scattering. The results indicate that, for C7, the tilt angle so calculated is much smaller than that in the Sm-C * angle and hence de Vries behavior may not be the appropriate explanation in this case. Conversely, we find that TSiKN65 shows a different behavior to C7, which can be explained in terms of the de Vries concept. Thus, we conclude that either type of distribution may exist in Sm-A phases which undergo a first-order transition to the Sm-C * phase. We also discuss the changes in the smectic layer spacing and the orientational order parameters across the Sm-ASm-C * phase transition, together with changes in birefringence with applied electric field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.