In a recent paper, we have shown how in Madelung’s hydrodynamic formulation of quantum mechanics, the uncertainties are related to the phase and amplitude of the complex wave function. Now we include a dissipative environment via a nonlinear modified Schrödinger equation. The effect of the environment is described by a complex logarithmic nonlinearity that vanishes on average. Nevertheless, there are various changes in the dynamics of the uncertainties originating from the nonlinear term. Again, this is illustrated explicitly using generalized coherent states as examples. With particular focus on the quantum mechanical contribution to the energy and the uncertainty product, connections can be made with the thermodynamic properties of the environment.
Madelung showed how the complex Schrödinger equation can be rewritten in terms of two real equations, one for the phase and one for the amplitude of the complex wave function, where both equations are not independent of each other, but coupled. Although these equations formally look like classical hydrodynamic equations, they contain all the information about the quantum system. Concerning the quantum mechanical uncertainties of position and momentum, however, this is not so obvious at first sight. We show how these uncertainties are related to the phase and amplitude of the wave function in position and momentum space and, particularly, that the contribution from the phase essentially depends on the position–momentum correlations. This will be illustrated explicitly using generalized coherent states as examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.