Abstract-The control of nonlinear systems has been putting especial attention in the use of Artificial Intelligent techniques, where fuzzy logic presents one of the best alternatives due to the exploit of human knowledge. However, several fuzzy logic real-world applications use manual tuning (human expertise) to adjust control systems. On the other hand, in the Intelligent Transport Systems (ITS) field, the longitudinal control (throttle and brake management) is an important topic because external perturbations can generate uncomfortable accelerations as well as unnecessary fuel consumption. In this work, we utilize a neuro-fuzzy system to use human driving knowledge to tune and adjust the input-output parameters of a fuzzy ifthen system. The neuro-fuzzy system considered in this work is ANFIS (Adaptive-Network-based Fuzzy Inference System). Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous manual tuned controller, mainly in comfort and efficient use of actuators.
Summary
Over the past few decades, the behavior of electricity consumption has been changing, especially because of improvements in the distributed generation segment and technological innovations presented by smart grids. The use of microgeneration and the availability of electricity pricing in real time allow consumers to control their consumption, or generation, according to market conditions. This new dynamic tends to increasingly change the price elasticity of electricity demand, by indicating the need to readjust load forecasting models. In this market environment, in addition to providing robust estimates for the planning and operation of electric power systems, load forecasting models have become fundamental in the context of demand management. Thus, this paper proposes to develop an artificial neural network and fuzzy logic for load forecasting to perform an efficiency analysis. This system is able to provide estimates of the elasticity of electricity demand behavior with more satisfactory results. To do so, improvements in the neural network with multilayer perceptron are proposed. In this case, the adaptation of parameters to correlate variations in consumption with the changes in electricity tariffs was developed. The addition of this new structure produced better results compared with the conventional neural network. Computer tests were conducted using historical data from the ISO New England Inc and PJM Interconnection. Price elasticity estimates of electricity demand showed a sharp increase of demand in relation to the elasticity behavior.
Summary
Accurately quantifying the social distancing (SD) practice of a population is essential for governments and health agencies to better plan and adapt restrictions during a pandemic crisis. In such a scenario, the reduction of social mobility also has a significant impact on electricity consumption, since people are encouraged to stay at home and many commercial and industrial activities are reduced or even halted. This paper proposes a methodology to qualify the SD of a medium‐sized city, located in the northwest of the state of Rio Grande do Sul (RS), Brazil, using data of electricity consumption measured by the municipality's energy utility. The methodology consists of combining a data set, and an average consumption profile of Sundays is obtained using data from 4‐months, it is then defined as a high SD profile due to the typical lower social activities on Sundays. An supervised and an unsupervised artificial neural network (ANN) are trained with this profile and used to analyze electricity consumption of this city during the COVID‐19 pandemic. Low, moderate, and high SD ranges are also created, and the daily population behavior is evaluated by the ANNs. The results are strongly correlated and discussed with government restrictions imposed during the analyzed period and indicate that the ANNs can correctly classify the intensity of SD practiced by people. The unsupervised ANN is used more easily and in different scenarios, so it can be indicated for use by public administration for purposes of assess the effectiveness of SD policies based on the guidelines established during the COVID‐19 pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.