IL-4 is involved in several human diseases including allergies, autoimmunity, and cancer. Its effects are mainly mediated through the transcription factor STAT6. Therefore, investigation of compounds that regulate STAT6 activation is of great interest for these diseases. Natural polyphenols are compounds reported to have therapeutic properties in diseases involving IL-4 and STAT6. The aim of this study was to investigate the effect of these compounds in the activation of this transcription factor. We found that in hemopoietic cells from human and mouse origin, some flavonoids were able to inhibit the activation of STAT6 by IL-4. To identify molecular mechanisms, we focused on kaempferol, the compound that showed the greatest inhibitory effect with the lowest cell toxicity. Treatment of cells with kaempferol did not affect activation of Src kinase by IL-4 but did prevent the phosphorylation of JAK1 and JAK3. Further enzymatic analysis demonstrated that kaempferol blocked the in vitro phosphorylation activity of JAK3 without affecting JAK1, suggesting that it specifically targeted JAK3 activity. Accordingly, kaempferol had no effect on STAT6 activation in nonhemopoietic cell lines lacking JAK3, supporting its selective inhibition of IL-4 responses through type I receptors expressing JAK3 but not type II lacking this kinase. The inhibitory effect of kaempferol was also observed in IL-2 but not IL-3-mediated responses and correlated with the inhibition of MLC proliferation. These findings reveal the potential use of kaempferol as a tool for selectively controlling cell responses to IL-4 and, in general, JAK3-dependent responses.
Allergic diseases, including asthma, represent a major threat to human health. Over the three last decades, their incidence has risen in western countries. Aspirin treatment has been shown to improve allergic diseases, especially asthma, and the decreased use of aspirin has been hypothesized to contribute to the increase in childhood asthma. Because salicylate compounds suppress a number of enzymatic activities, and signaling through IL-4R participates in the development of allergic responses, we tested the effect of salicylates on IL-4 signal transduction. We found that treatment of cell lines and primary cells with aspirin and salicylates, but not acetaminophen, inhibited the activation of STAT6 by IL-4 and IL-13. This effect correlated with the inhibition of IL-4-induced CD23 expression. Although salicylates inhibited the in vivo activation of Janus kinases, their kinase activity was not affected in vitro by salicylates, suggesting that other kinases were involved in IL-4-induced STAT6 activation. Furthermore, we found that an Src kinase was involved in STAT6 activation because 1) Src kinase activity was induced by IL-4, 2) Src kinase activity, but not Janus kinase, was inhibited by salicylates in vitro, 3) cells expressing viral Src had constitutive STAT6 phosphorylation, and 4) cells lacking Src showed low STAT6 phosphorylation in response to IL-4. Because STAT6 activation by IL-4 and IL-13 participates in the development of allergic diseases, our results provide a mechanism to explain the beneficial effects of aspirin and salicylate treatment of these diseases.
The transcription factor STAT6 plays an important role in cell responses to IL-4. Its activation is tightly regulated. STAT6 phosphorylation is associated with JAKs, whereas dephosphorylation is associated with specific phosphatases. Several studies indicate that proteases can also regulate STAT6. The aim of this study was to investigate the nature of these proteases in mouse T cell lines. We found that STAT6 was degraded in cell extracts by calcium-dependent proteases. This degradation was specifically prevented by calpain inhibitors, suggesting that STAT6 was a target for these proteases. This was supported by the cleavage of STAT6 by recombinant calpains. The proteolytic regulation of STAT6 was more complex in vivo. Calcium signaling was not sufficient to induce STAT6 degradation. However, treatment of IL-4-stimulated cells with calcium ionophores resulted in the absence of phosphorylated STAT6. This effect correlated with the loss of STAT6 protein and was prevented by calpain inhibitors. Cytoplasmic calpains seemed to be responsible for STAT6 degradation. Calpains can target signaling proteins; in this study we found that they can negatively regulate activated STAT6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.