Mixed-level designs have a wide application in the fields of medicine, science, and agriculture, being very useful for experiments where there are both, quantitative, and qualitative factors. Traditional construction methods often make use of complex programing specialized software and powerful computer equipment. This article is focused on a subgroup of these designs in which none of the factor levels are multiples of each other, which we have called pure asymmetrical arrays. For this subgroup we present two algorithms of zero computational cost: the first with capacity to build fractions of a desired size; and the second, a strategy to increase these fractions with M additional new runs determined by the experimenter; this is an advantage over the folding methods presented in the literature in which at least half of the initial runs are required. In both algorithms, the constructed fractions are comparable to those showed in the literature as the best in terms of balance and orthogonality.
El diseño de experimentos es una herramienta utilizada para descubrir como entran en juego distintas variables de un proceso en la obtención de un producto. Existen dos enfoques principales para realizar experimentación, el enfoque clásico y el enfoque de Taguchi. Los diseños de Taguchi son diseños ortogonales que se especializan en estimar efectos principales e interacciones de control por ruido, dejando en segundo plano las interacciones de control por control. Los arreglos ortogonales de Taguchi fueron diseñados de tal manera que un arreglo especifico puede ser utilizado para diferentes números de factores, por ejemplo, el L32 se utiliza cuando existen de 16 a 31 factores y requiere de 32 experimentos. Cuando el número de columnas disponibles excede al número de factores que se desea investigar, las columnas sobrantes se utilizan comúnmente para estimar interacciones. Sin embargo, en casos en que el investigador esta solo interesado en los efectos principales, correr el arreglo completo podría ser algo innecesario y costoso. La presente investigación tiene como objetivo fraccionar los arreglos ortogonales de Taguchi L8, L12, L16 y L32 de tal forma que la fracción generada sirva únicamente para estimar efectos principales y las corridas restantes se agreguen solo en caso de ser requeridas. El método propuesto se basa en búsqueda exhaustiva y utiliza como criterios de selección la D-optimalidad, los factores de inflación de varianza (FIV) y el índice de balance general (IBG). Solo arreglos ortogonales de Taguchi de dos niveles fueron considerados para esta investigación. Los resultados de la investigación se traducen en ahorros significativos de recursos, reducción del tiempo de experimentación y del numero de corridas.
Alias structures for two-level fractional designs are commonly used to describe the correlations between different terms. The concept of alias structures can be extended to other types of designs such as fractional mixed-level designs. This paper proposes an algorithm that uses the Pearson’s correlation coefficient and the correlation matrix to construct alias structures for these designs, which can help experimenters to more easily visualize which terms are correlated (or confounded) in the mixed-level fraction and constitute the basis for efficient sequential experimentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.