Face recognition is a natural skill that a child performs from the first days of life; unfortunately, there are people with visual or neurological problems that prevent the individual from performing the process visually. This work describes a system that integrates Artificial Intelligence which learns the face of the people with whom the user interacts daily. During the study we propose a new hybrid model of Alpha-Beta Associative memories (Amαβ) with Correlation Matrix (CM) and K-Nearest Neighbors (KNN), where the Amαβ-CMKNN was trained with characteristic biometric vectors generated from images of faces from people who present different facial expressions such as happiness, surprise, anger and sadness. To test the performance of the hybrid model, two experiments that differ in the selection of parameters that characterize the face are conducted. The performance of the proposed model was tested in the databases CK+, CAS-PEAL-R1 and Face-MECS (own), which test the Amαβ-CMKNN with faces of subjects of both sexes, different races, facial expressions, poses and environmental conditions. The hybrid model was able to remember 100% of all the faces learned during their training, while in the test in which faces are presented that have variations with respect to those learned the results range from 95.05% in controlled environments and 86.48% in real environments using the proposed integrated system.
It is shown experimentally a new digital optical decoding scheme based
on the transmission or polarized light at p polarization planes using a
K-Nearest Neighbor (KNN) algorithm through a single-mode optical fibre
at 633 nm. The optical power signal is sent at p polarization planes
which constitute p classes required for signal bit recognition. Results
show that it is possible to recognize 32 polarizations planes, 5 bits,
using 4 features corresponding to the measurement of optical power at 4
different angles at the photodetector side with an average assertiveness
of 99.1%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.