In an increasingly digital world, identifying signs of online extremism sits at the top of the priority list for counter-extremist agencies. 1 Researchers and governments are investing in the creation of advanced information technologies to identify and counter extremism through intelligent large-scale analysis of online data. However, to the best of our knowledge, these technologies are neither based on, nor do they take advantage of, the existing theories and studies of radicalisation. In this paper we propose a computational approach for detecting and predicting the radicalisation influence a user is exposed to, grounded on the notion of 'roots of radicalisation' from social science models. This approach has been applied to analyse and compare the radicalisation level of 112 pro-ISIS vs.112 "general" Twitter users. Our results show the effectiveness of our proposed algorithms in detecting and predicting radicalisation influence, obtaining up to 0.9 F-1 measure for detection and between 0.7 and 0.8 precision for prediction. While this is an initial attempt towards the effective combination of social and computational perspectives, more work is needed to bridge these disciplines, and to build on their strengths to target the problem of online radicalisation.
This paper has identified a minimal configuration of a DNN architecture and hyperparameter settings to effectively estimate SOC of EV battery cells. The results from the experimental work has shown that a minimal configuration of hidden layers and neurons can reduce the computational cost and resources required without compromising the performance. This is further supported by the number of epochs taken to train the best DNN SOC estimations model. Hence, demonstrating that, the risk of overfitting estimation models to training datasets, can also be subsided. This is further supported by the generalisation capability of the best model demonstrated through the decrease in error metrics values from test phase to those in validation phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.