Epigenetics refers to mitotically and/or meiotically heritable variations in gene expression that are not caused by changes in DNA sequence. Epigenetic mechanisms regulate all biological processes from conception to death, including genome reprogramming during early embryogenesis and gametogenesis, cell differentiation and maintenance of a committed lineage. Key epigenetic players are DNA methylation and histone post-translational modifications, which interplay with each other, with regulatory proteins and with non-coding RNAs, to remodel chromatin into domains such as euchromatin, constitutive or facultative heterochromatin and to achieve nuclear compartmentalization. Besides epigenetic mechanisms such as imprinting, chromosome X inactivation or mitotic bookmarking which establish heritable states, other rapid and transient mechanisms, such as histone H3 phosphorylation, allow cells to respond and adapt to environmental stimuli. However, these epigenetic marks can also have long-term effects, for example in learning and memory formation or in cancer. Erroneous epigenetic marks are responsible for a whole gamut of diseases including diseases evident at birth or infancy or diseases becoming symptomatic later in life. Moreover, although epigenetic marks are deposited early in development, adaptations occurring through life can lead to diseases and cancer. With epigenetic marks being reversible, research has started to focus on epigenetic therapy which has had encouraging success. As we witness an explosion of knowledge in the field of epigenetics, we are forced to revisit our dogma. For example, recent studies challenge the idea that DNA methylation is irreversible. Further, research on Rett syndrome has revealed an unforeseen role for methyl-CpG-binding protein 2 (MeCP2) in neurons.
The mammalian cerebellum is located in the posterior cranial fossa and is critical for motor coordination and non-motor functions including cognitive and emotional processes. The anatomical structure of cerebellum is distinct with a three-layered cortex. During development, neurogenesis and fate decisions of cerebellar primordium cells are orchestrated through tightly controlled molecular events involving multiple genetic pathways. In this review, we will highlight the anatomical structure of human and mouse cerebellum, the cellular composition of developing cerebellum, and the underlying gene expression programs involved in cell fate commitments in the cerebellum. A critical evaluation of the cell death literature suggests that apoptosis occurs in ~5% of cerebellar cells, most shortly after mitosis. Apoptosis and cellular autophagy likely play significant roles in cerebellar development, we provide a comprehensive discussion of their role in cerebellar development and organization. We also address the possible function of unfolded protein response in regulation of cerebellar neurogenesis. We discuss recent advancements in understanding the epigenetic signature of cerebellar compartments and possible connections between DNA methylation, microRNAs and cerebellar neurodegeneration. Finally, we discuss genetic diseases associated with cerebellar dysfunction and their role in the aging cerebellum.
Rett syndrome (RTT) is a severe and progressive neurological disorder, which mainly affects young females. Mutations of the methyl-CpG binding protein 2 (MECP2) gene are the most prevalent cause of classical RTT cases. MECP2 mutations or altered expression are also associated with a spectrum of neurodevelopmental disorders such as autism spectrum disorders with recent links to fetal alcohol spectrum disorders. Collectively, MeCP2 relation to these neurodevelopmental disorders highlights the importance of understanding the molecular mechanisms by which MeCP2 impacts brain development, mental conditions, and compromised brain function. Since MECP2 mutations were discovered to be the primary cause of RTT, a significant progress has been made in the MeCP2 research, with respect to the expression, function and regulation of MeCP2 in the brain and its contribution in RTT pathogenesis. To date, there have been intensive efforts in designing effective therapeutic strategies for RTT benefiting from mouse models and cells collected from RTT patients. Despite significant progress in MeCP2 research over the last few decades, there is still a knowledge gap between the in vitro and in vivo research findings and translating these findings into effective therapeutic interventions in human RTT patients. In this review, we will provide a synopsis of Rett syndrome as a severe neurological disorder and will discuss the role of MeCP2 in RTT pathophysiology.
MeCP2 is a critical epigenetic regulator in brain and its abnormal expression or compromised function leads to a spectrum of neurological disorders including Rett Syndrome and autism. Altered expression of the two MeCP2 isoforms, MeCP2E1 and MeCP2E2 has been implicated in neurological complications. However, expression, regulation and functions of the two isoforms are largely uncharacterized. Previously, we showed the role of MeCP2E1 in neuronal maturation and reported MeCP2E1 as the major protein isoform in the adult mouse brain, embryonic neurons and astrocytes. Recently, we showed that DNA methylation at the regulatory elements (REs) within the Mecp2 promoter and intron 1 impact the expression of Mecp2 isoforms in differentiating neural stem cells. This current study is aimed for a comparative analysis of temporal, regional and cell type-specific expression of MeCP2 isoforms in the developing and adult mouse brain. MeCP2E2 displayed a later expression onset than MeCP2E1 during mouse brain development. In the adult female and male brain hippocampus, both MeCP2 isoforms were detected in neurons, astrocytes and oligodendrocytes. Furthermore, MeCP2E1 expression was relatively uniform in different brain regions (olfactory bulb, striatum, cortex, hippocampus, thalamus, brainstem and cerebellum), whereas MeCP2E2 showed differential enrichment in these brain regions. Both MeCP2 isoforms showed relatively similar distribution in these brain regions, except for cerebellum. Lastly, a preferential correlation was observed between DNA methylation at specific CpG dinucleotides within the REs and Mecp2 isoform-specific expression in these brain regions. Taken together, we show that MeCP2 isoforms display differential expression patterns during brain development and in adult mouse brain regions. DNA methylation patterns at the Mecp2 REs may impact this differential expression of Mecp2/MeCP2 isoforms in brain regions. Our results significantly contribute towards characterizing the expression profiles of Mecp2/MeCP2 isoforms and thereby provide insights on the potential role of MeCP2 isoforms in the developing and adult brain.
MEIS proteins form heteromeric DNA-binding complexes with PBX monomers and PBX⅐HOX heterodimers. We have shown previously that transcriptional activation by PBX⅐HOX is augmented by either protein kinase A (PKA) or the histone deacetylase inhibitor trichostatin A (TSA). To examine the contribution of MEIS proteins to this response, we used the chromatin immunoprecipitation assay to show that MEIS1 in addition to PBX1, HOXA1, and HOXB1 was recruited to a known PBX⅐HOX target, the Hoxb1 autoregulatory element following Hoxb1 transcriptional activation in P19 cells. Subsequent to TSA treatment, MEIS1 recruitment lagged behind that of HOX and PBX partners. MEIS1A also enhanced the transcriptional activation of a reporter construct bearing the Hoxb1 autoregulatory element after treatment with TSA. The MEIS1 homeodomain and protein-protein interaction with PBX contributed to this activity. We further mapped TSAresponsive and CREB-binding protein-dependent PKAresponsive transactivation domains to the MEIS1A and MEIS1B C termini. Fine mutation of the 56-residue MEIS1A C terminus revealed four discrete regions required for transcriptional activation function. All of the mutations impairing the response to TSA likewise reduced activation by PKA, implying a common mechanistic basis. C-terminal deletion of MEIS1 impaired transactivation without disrupting DNA binding or complex formation with HOX and PBX. Despite sequence similarity to MEIS and a shared ability to form heteromeric complexes with PBX and HOX partners, the PREP1 C terminus does not respond to TSA or PKA. Thus, MEIS C termini possess transcriptional regulatory domains that respond to cell signaling and confer functional differences between MEIS and PREP proteins. Meis11 (myeloid ecotropic viral insertion site 1) was identified at one of the common viral integration sites in myeloid leukemic cells of BXH-2 mice (1) and has been shown to promote oncogenic transformation in several contexts (2, 3). Meis1 and its fly homolog homothorax (hth) encode homeoproteins of the three-amino acid loop extension class and therefore are related to the vertebrate pre-B cell transformation (Pbx) genes and their fly homolog extradenticle (exd) (4, 5). Three genes constitute the mammalian Meis family (6 -10) with Meis1 transcripts alternatively spliced to yield multiple isoforms (1, 11). In addition, the Meis-related genes Prep1 and Prep2 (for PBX regulatory protein) have also been identified (12)(13)(14).MEIS/PREP/HTH proteins form stable heterodimers with PBX/EXD partners. In addition, PBX or MEIS family members bind DNA cooperatively with subsets of HOX partners (Ref. 15 and references therein), thus permitting the formation of DNAbound heterotrimeric MEIS⅐PBX⅐HOX complexes. These heterodimeric and trimeric complexes modulate the functional specificity of HOX proteins, perhaps by increasing DNA binding affinity and selectivity (16 -20) and/or by modulating coregulator interactions (21). PBX/EXD and MEIS/PREP/HTH are mutually dependent for accumulation in the nucleus (22-24), ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.