We introduce improvements in the algorithm by Gastin and Oddoux translating LTL formulae into Büchi automata via very weak alternating co-Büchi automata and generalized Büchi automata. Several improvements are based on specific properties of any formula where each branch of its syntax tree contains at least one eventually operator and at least one always operator. These changes usually result in faster translations and smaller automata. Other improvements reduce non-determinism in the produced automata. In fact, we modified all the steps of the original algorithm and its implementation known as LTL2BA. Experimental results show that our modifications are real improvements. Their implementations within an LTL2BA translation made LTL2BA very competitive with the current version of SPOT, sometimes outperforming it substantially.
Some applications of linear temporal logic (LTL) require to translate formulae of the logic to deterministic ω-automata. There are currently two translators producing deterministic automata: ltl2dstar working for the whole LTL and Rabinizer applicable to LTL(F, G) which is the LTL fragment using only modalities F and G. We present a new translation to deterministic Rabin automata via alternating automata and deterministic transition-based generalized Rabin automata. Our translation applies to a fragment that is strictly larger than LTL(F, G). Experimental results show that our algorithm can produce significantly smaller automata compared to Rabinizer and ltl2dstar, especially for more complex LTL formulae.
Abstract. We unify a view on three extensions of Process Rewrite Systems (PRS) and compare their expressive power with that of PRS. We show that the class of Petri nets is less expressive up to bisimulation equivalence than the class of PA processes extended with a finite state control unit. Further we show our main result that the reachability problem for PRS extended with a so called weak finite state unit is decidable.
Abstract. Recently, there was defined a fragment of LTL (containing fairness properties among other interesting formulae) whose validity over a given infinite word depends only on an arbitrary suffix of the word. Building upon an existing translation from LTL to Büchi automata, we introduce a compositional approach where subformulae of this fragment are translated separately from the rest of an input formula and the produced automata are composed in a way that the subformulae are checked only in relevant accepting strongly connected components of the final automaton. Further, we suggest improvements over some procedures commonly applied to generalized Büchi automata, namely over generalized acceptance simplification and over degeneralization. Finally we show how existing simulation-based reductions can be implemented in a signature-based framework in a way that improves the determinism of the automaton.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.