A plastic optical fibre biosensor based on surface plasmon resonance for the detection of C-reactive protein (CRP) in serum is proposed. The biosensor was integrated into a home-made thermo-stabilized microfluidic system that allows avoiding any thermal and/or mechanical fluctuation and maintaining the best stable conditions during the measurements. A working range of 0.006-70 mg L and a limit of detection of 0.009 mg L were achieved. These results are among the best compared to other SPR-based biosensors for CRP detection, especially considering that they were achieved in a real and complex medium, i.e. serum. In addition, since the sensor performances satisfy those requested in physiologically-relevant clinical applications, the whole biosensing platform could well address high sensitive, easy to realize, real-time, label-free, portable and low cost diagnosis of CRP for future lab-on-a-chip applications. 3D sketch (left) of the thermo-stabilized home-made flow cell developed to house the SPR-based plastic optical fibre biosensor. Exemplary response curve (shift of the SPR wavelength versus time) of the proposed biosensor (right) for the detection of C-reactive protein in serum.
A new complete analysis of the effect of induced inner curvature on refractive index (RI) sensitivity in internally tilted long-period gratings (ITLPGs) is presented. The responses in terms of RI sensitivity of a standard LPG and different ITLPGs with curvature values between 15 and 19 m-1 were compared. The analysis suggests first, that the larger the induced curvature, the greater the RI sensitivity; and second, that the RI sensitivity exponentially increases with both the curvature and cladding mode order. RI sensitivity greater than 100 nm RIU-1 can be attained with curvature greater than 25 m-1 for LP06 mode. Conversely, the temperature sensitivity of ITLPGs is comparable to standard LPGs for the considered cladding mode order.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.