This paper presents a design technique for feedforward tracking control targeting predictable embedded platforms. An embedded control implementation experiences sensor-to-actuator delay which in turn changes the location of the system zeros. In this work, we show that such delay changes the number of unstable zeros which influences the tracking performance. We propose a zero loci analysis with respect to the delay and identify delay regions which potentially improve tracking performance. We utilize the analysis results to improve tracking performance of implementations targeting modern predictable embedded architectures where the delay can be precisely regulated. We validate our results by simulation and hardware-in-the-loop (HIL) implementation considering a real-life motion system.
published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.