In this paper, a hybrid topology of FACTS devices has been investigated to improve stability features of static voltage. The primary assumption is a power system which has been located under SVC parallel compensation. HPFC forms a hybrid controller using IPFC series converters as a hybrid with existing parallel and passive compensator (SVC) in power system. Thus, simultaneous and independent control of active power flow can be reached through transmission lines and the exchanged reactive power values towards sending and receiving line. Using a hybrid structure makes the use of convertors to improve performance of the old and existing compensators in the power system possible. In this study, the power injection model (PIM) has been used to model series-parallel parts of hybrid power flow controller in Newton-Raphson load flow, and all have been simulated in M-file environment of MATLAB software. In order to investigate the effect of this controller on stability properties of static voltage, P-V curve of PQ buses of a prototype system has been evaluated in a continuous power flow (CPF) in M-file environment of MATLAB software. In the section of simulation results, SVC parallel compensation and UPFC series-parallel compensation are compared in terms of the amount of losses, active and reactive power, and improvement of the system’s loading limit with the proposed hybrid structure.
Power quality has become an increasingly important topic in the performance of many industrial applications. One of the major issues in improving power quality in distribution networks is the mitigation of voltage sags. Voltage sag can be mitigated by voltage and power injections into the distribution system using Dynamic Voltage Restorer (DVR). The DVR is a powerful controller that is commonly used for voltage sags mitigation at the point of connection. This paper describes of modeling and analysis of DVR. Different types of faults are applied for DVR in distribution network and the responses of the system for these disturbances are examined. Simulation results obtained in PSCAD/EMTDC also prove that the DVR can mitigate voltage sag and protect bus bar voltage from various types of faults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.