Innovations in "sustainable" photonics technologies such as free-space optical links and solar-powered equipment provide developing countries with new cost-effective opportunities for deploying future-proof telecommunication networks.
The widespread increase in the use of light emitting diodes in vehicle's head and taillights and also the use of dashboard cameras provides great prospects for the optical camera based visible light communications (VLC) technology in intelligent transport systems. In this paper, we experimentally investigate the impact of fog on the optical camera based VLC technology for vehicle-to-vehicle (V2V) communications. A range of meteorological visibilities between 5-120 m is considered based on realistic inter-vehicle distances in practical vehicular environments and using a real car taillight as the transmitter. We show a reduction in the index of modulation of the signals from 1 to 0.75 and 0.5 to allow for tracking purposes of the light source when sending '0' symbols. The results show that, the link is error-free up to 20 m meteorological visibility for the three modulation index scenarios and degrades considerably below 10 m meteorological visibility.
Free-Space Optical (FSO) systems offer the ability to distribute high speed digital links into remote and rural communities where terrain, installation cost or infrastructure security pose critical hurdles to deployment. A challenge in any point-to-point FSO system is initiating and maintaining optical alignment from the sender to the receiver. In this paper we propose and demonstrate a low-complexity self-aligning FSO prototype that can completely self-align with no requirement for initial manual positioning and could therefore form the opto-mechanical basis for a mesh network of optical transceivers. The prototype utilises off-the-shelf consumer electrical components and a bespoke alignment algorithm. We demonstrate an eight fibre spatially multiplexed link with a loss of 15 dB over 210 m.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.