We assessed the expression of Bcl-2 family members at both mRNA and protein levels as well as the Caspase-3 activity, in order to investigate the occurrence of apoptosis in hippocampus of STZ-induced diabetic rats. We selected twenty-four Wistar rats; half of them were made diabetic by intraperitoneal injection of a single 60 mg/kg dose of streptozotocin (STZ, IP), while the others received normal saline and served as controls. The expressions of Bcl-2, Bcl-xL, and Bax mRNA and proteins were measured using RT-PCR and western blotting, respectively. Caspases-3 activity was determined by using the Caspase-3/CPP32 Fluorometric Assay Kit. The result showed that mRNA
and protein levels of Bcl-2 and Bcl-xL were lower in hippocampus of diabetic group than that of the control group, whereas expressions of Bax in hippocampus of diabetic rats were higher than that of controls at both mRNA
and protein levels (P < .01). Hyperglycemia was found to raise 6.9-fold hippocampal caspase-3 activity in diabetic group compared with control group (P < .001). Therefore, the induction of diabetes is associated with increased ratios of Bax/Bcl-2, Bax/Bcl-xL, and increased caspase-3 activity in hippocampus which shows that apoptosis is favored in hippocampal region.
The results indicate that exposure of people to pistachio significantly affects the prevalence of its allergic reactions. In addition, it was observed that, among pistachio allergic subjects, such exposure may affect the co-sensitivities with other nuts, including cashew and almond. The plant taxonomic classification of pistachio and other tree nuts does appear to predict allergenic cross-reactivity.
Numerous studies have demonstrated that targeting immunogens to FcγR on antigen-presenting cells (APCs) can selectively uptake and increase cellular immunity in vitro and in vivo. Therefore, the present study was conducted to evaluate immunogenicity of a novel multistage tuberculosis vaccine, a combination of an early and a dormant immunogenic protein, ESAT6 and HspX, fused to Fcγ2a fragment of mouse IgG2a to target all forms of tuberculosis. Codon-optimized genes consisting of ESAT6, a linker, and HspX fused either to mouse Fcγ2a (ESAT6:HspX:mFcγ2a) or 6× His-tag (ESAT6:HspX:His) were synthesized. The resulting proteins were then produced in Pichia pastoris. The fusion proteins were separately emulsified in dimethyldioctadecylammonium bromide(DDA)-trehalose-6,6-dibehenate(TDB) adjuvant, and their immunogenicity with and without bacille Calmette-Guérin (BCG) was assessed in C57BL/6 mice. Th1, Th2, Th17, and T-reg cytokine patterns were evaluated using the ELISA method. Both multistage vaccines induced very strong IL-12 and IFN-γ secretion from splenic cells; the Fc-tagged subunit vaccine induced a more effective Th1 immune response (IFN-γ, 910 pg/mL, and IL-12, 854 pg/mL) with a very low increase in IL-17 (∼0.1 pg/mL) and IL-4 (37 pg/mL) and a mild increase in TGF-β (543 pg/mL) compared to the BCG or ESAT6:HspX:His primed and boosted groups. The production of IFN-γ to ESAT6:HspX:Fcγ2a was very consistent and showed an increasing trend for IL-12 compared to the BCG or ESAT6:HspX:His primed and boosted groups. Fcγ2a used as a delivery vehicle supported the idea of selective uptake, inducing cross-presentation and forming a proper anti-tuberculosis response in context of Th1/Th2 and Th17/T-reg balances, which is important for protection and prevention of damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.