Concrete dams are considered as complex construction systems that play a major role in the context of both economic and strategic utilities. Taking into account reservoir and foundation presence in modeling the dam-reservoir-foundation interaction phenomenon leads to a more realistic evaluation of the total system behavior. The article discusses the dynamic behavior of dam-reservoir-foundation system under seismic loading using Ansys finite element code. Oued Fodda concrete dam, situated at Chlef, in North-West of Algeria, was chosen as a case study. Parametric study was also performed for different ratios between foundation Young's modulus and dam Young's modulus E f /E d (which varies from 0.5 to 4). Added mass approach was used to model the fluid reservoir. The obtained results indicate that when dam Young's modulus and foundation Young's modulus are equal, the foundation soil leads to less displacements in the dam body and decreases the principal stresses as well as shear stresses.
This paper shows the impact of material nonlinearity of a dam-foundation rock system on seismic performance of Oued Fodda concrete gravity dam, located at northwestern side of Algeria. For the purpose, a three-dimensional dam-foundation rock system finite element model is employed in analyses. The hydrodynamic interaction between reservoir water and dam-foundation system is implicitly taken into consideration by the Westergaard approach using surface finite elements added to dam-fluid and foundation-fluid interfaces. The concrete material model is used to present the cracking of dam concrete under a seismic load the using smeared crack approach based on the Willam and Warnke failure criterion. The materially nonlinear analysis for both dam concrete and foundation rock is performed using Drucker--Prager model. According to numerical results, tensile stresses and maximum strains reduce significantly in the materially nonlinear model. In addition, the cracking areas in the dam decrease also when material nonlinearity characteristics of the dam-foundation rock system is considered in analyses.
The sliding of dam base along dam-foundation rock interface during earthquake excitation can decrease the earthquake response of the dam. The present study reveals a numerical simulation of the seismic failure response for Oued Fodda concrete gravity dam, located in northwest of Algeria, considering base sliding. Nonlinear finite element analyses are performed for Oued Fodda damfoundation rock system. The Smeared crack approach is used to present cracking of dam concrete under the 1980 El Asnam earthquake (M7) using Willam and Warnke failure criterion. The hydrodynamic pressure of the reservoir water is modeled as added mass using the Westergaard approach. The sliding behavior of contractions joints is modeled by surface-surface contact elements that provide the friction contact at dam-foundation interface. Drucker-Prager model is considered for dam concrete in nonlinear analysis. According to numerical analyses, several cracks may appear due to tension particularly at middle upper parts located along the symmetry central axis of the dam in both upstream and downstream faces. Although the dam sliding on its foundation reduces the magnitude of principal tensile stresses in dam body; however, the reduction magnitude is generally not large enough to preclude the cracks propagation in dam body.
Seismic analysis of a fractured dam is a generally complex problem. This paper presents an earthquake behavior investigation of a fractured concrete gravity dam considering dam-reservoir--foundation rock interaction. The Koyna dam profile, located in India, is adopted in this study. The nonlinear finite element analyses are conducted taking into account empty and full reservoir cases, to exhibit the hydrodynamic e ect of reservoir water on the dam earthquake response. The hydrodynamic pressure is modeled by fluid finite elements based on a Lagrangian approach. Transient analyses take into account material and connection nonlinearity. Drucker-Prager model is employed in nonlinear analyses for the dam concrete and foundation rock. The structural crack between the top and bottom blocks of the dam is presented by surface-to-surface contact elements based on Coulomb’s friction law in order to simulate the behavior of contact joints and deformation of blocks. The distribution of horizontal displacements and principal stresses along the dam height is investigated for empty and full reservoir cases.The failure processes of two potential failure modes of cracked dam, i.e, the separation and sliding of top block during an earthquake, are examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.