a b s t r a c tThere is currently a number of research work performed in the area of bridging the gap between Information Retrieval (IR) and Online Social Networks (OSN). This is mainly done by enhancing the IR process with information coming from social networks, a process called Social Information Retrieval (SIR). The main question one might ask is What would be the benefits of using social information (no matter whether it is content or structure) into the information retrieval process and how is this currently done?With the growing number of efforts towards the combination of IR and social networks, it is necessary to build a clearer picture of the domain and synthesize the efforts in a structured and meaningful way. This paper reviews different efforts in this domain. It intends to provide a clear understanding of the issues as well as a clear structure of the contributions. More precisely, we propose (i) to review some of the most important contributions in this domain to understand the principles of SIR, (ii) a taxonomy to categorize these contributions, and finally, (iii) an analysis of some of these contributions and tools with respect to several criteria, which we believe are crucial to design an effective SIR approach. This paper is expected to serve researchers and practitioners as a reference to help them structuring the domain, position themselves and, ultimately, help them to propose new contributions or improve existing ones.
Peer Data Management Systems (PDMSs) are advanced P2P applications in which each peer represents an autonomous data source making available an exported schema to be shared with other peers. Query answering in PDMSs can be improved if peers are efficiently disposed in the overlay network according to the similarity of their content. The set of peers can be partitioned into clusters, so as the semantic similarity among the peers participating into the same cluster is maximal. The creation and maintenance of clusters is a challenging problem in the current stage of development of PDMSs. This work proposes an incremental peer clustering process. The authors present a PDMS architecture designed to facilitate the connection of new peers according to their exported schema described by an ontology. The authors propose a clustering process and the underlying algorithm. The authors present and discuss some experimental results on peer clustering using the approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.