Abstract:In this paper, a compartment model has been built, presented and investigated the dynamics and spread of zika virus in both human and mosquito populations. It is focused to study the impact of symptomatic and asymptomatic infective immigrants on the spread of zika virus. A new mathematical model for human and model for vector population has been designed and presented. Here is symptomatic infective and is asymptomatic infective human populations. The present model is developed making some reasonable modifications in the corresponding epidemic model by considering symptomatic and asymptomatic infective immigrants. Susceptible vectors get infection either from symptomatic or asymptomatic infected human populations. The basic reproduction number is derived using the next generation matrix method. Disease free equilibrium point is found and endemic equilibrium state is identified. It is shown that the disease free equilibrium point is locally and globally asymptotically stable if the reproduction number takes a value less than one unit and unstable if it is more than one unit. Simulation study is conducted using MATLAB ode45.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.