UHMWPE is resistant to acids, alkalis and radiation. Its combination of unique properties makes this material attractive for obtaining multifunctional coatings. However, in practice, obtaining coatings based on UHMWPE is associated with difficulties associated with low thermal conductivity and high viscosity of the material. The possibility of overcoming the technological problems of obtaining gas-thermal coatings based on UHMWPE was studied in the present work. A physical model of a flame with UHMWPE particles moving along the central axis was developed by the finite element method. The temperature along the central axis of the plume was determined. The interaction between a gas-thermal torch and a UHMWPE particle was established. It was determined that the residence time of UHMWPE particles in a gas-thermal flame is not enough for its complete penetration, which is the reason for the appearance of various defects. The interrelation of the particle heating rate in the torch depending on its diameter was determined. A new variant of coating deposition with preliminary heating of the powder in a fluidized bed was proposed. The thermal characteristics of UHMWPE powder were determined by differential scanning calorimetry and thermogravimetric analysis. The allowable temperature interval for UHMWPE deposition was established. Coatings were obtained under various deposition modes. It was established using the methods of X-ray diffraction analysis and infrared spectroscopy that the structure of the crystal lattice of UHMWPE did not change after deposition. Significant oxidation processes do not occur during spraying. It was found using scanning electron microscopy that the coatings obtained with preliminary heating of the powder in a fluidized bed do not have air inclusions. The obtained results make it possible to obtain higher quality coatings.
The values of the heat flux density, transverse and longitudinal temperature gradients of the gas-thermal burner torch, the type of reaction during the combustion in various modes (reducing, neutral, oxidizing) depending on the mass fractions of the fuel and oxidizer burning have been determined in this paper. The significant role of the torch temperature as one of the most important parameters determining the quality of polymer coatings obtained by the gas-thermal method has been established. A spatial model of a gas-thermal burner has been designed, which allows to obtain thermal modes at specified technological parameters. A physical model of the interactions "torch-polymer particle", "thermal jet -base" has been developed. The necessary density of the torch heat flux for the complete melting of ultrahigh molecular weight polyethylene (UHMWPE) particles not exceeding the temperature threshold of destruction has been determined. The required rate of introduction the UHMWPE powders into the burner flame has been also determined. Based on the calculations of the "torch-polymer particle interaction", the optimal geometry of the torch, the particles trajectory in the torch and the spraying distances have been determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.