Endometriosis is a systemic and chronic condition in women of childbearing age, yet a highly enigmatic disease with unresolved questions: there are no known biomarkers, nor established clinical stages. We here investigate the use of patient-generated health data and data-driven phenotyping to characterize endometriosis patient subtypes, based on their reported signs and symptoms. We aim at unsupervised learning of endometriosis phenotypes using self-tracking data from personal smartphones. We leverage data from an observational research study of over 4000 women with endometriosis that track their condition over more than 2 years. We extend a classical mixed-membership model to accommodate the idiosyncrasies of the data at hand, i.e., the multimodality and uncertainty of the self-tracked variables. The proposed method, by jointly modeling a wide range of observations (i.e., participant symptoms, quality of life, treatments), identifies clinically relevant endometriosis subtypes. Experiments show that our method is robust to different hyperparameter choices and the biases of self-tracking data (e.g., the wide variations in tracking frequency among participants). With this work, we show the promise of unsupervised learning of endometriosis subtypes from self-tracked data, as learned phenotypes align well with what is already known about the disease, but also suggest new clinically actionable findings. More generally, we argue that a continued research effort on unsupervised phenotyping methods with patient-generated health data via new mobile and digital technologies will have significant impact on the study of enigmatic diseases in particular, and health in general.
The rapidly evolving science about the Coronavirus Disease 2019 (COVID-19) pandemic created unprecedented health information needs and dramatic changes in policies globally. We describe a platform, Watson AssistantTM (WA), which has been used to develop conversational agents to deliver COVID-19 related information. We characterized the diverse use cases and implementations during the early pandemic and measured adoption through number of users, messages sent, and conversational turns (i.e., pairs of interactions between users and agents). Thirty-seven institutions in nine countries deployed COVID-19 conversational agents with WA between March 30 and August 10, 2020, including 24 governmental agencies, seven employers, five provider organizations, and one health plan. Over 6.8 million messages were delivered through the platform. The mean number of conversational turns per session ranged between 1.9 and 3.5. Our experience demonstrates that conversational technologies can be rapidly deployed for pandemic response and are adopted globally by a wide range of users.
IMPORTANCE COVID-19 has highlighted widespread chronic underinvestment in digital health that hampered public health responses to the pandemic. Recognizing this, the Riyadh Declaration on Digital Health, formulated by an international interdisciplinary team of medical, academic, and industry experts at the Riyadh Global Digital Health Summit in August 2020, provided a set of digital health recommendations for the global health community to address the challenges of current and future pandemics. However, guidance is needed on how to implement these recommendations in practice. OBJECTIVETo develop guidance for stakeholders on how best to deploy digital health and data and support public health in an integrated manner to overcome the COVID-19 pandemic and future pandemics. EVIDENCE REVIEW Themes were determined by first reviewing the literature and Riyadh GlobalDigital Health Summit conference proceedings, with experts independently contributing ideas. Then, 2 rounds of review were conducted until all experts agreed on the themes and main issues arising using a nominal group technique to reach consensus. Prioritization was based on how useful the consensus recommendation might be to a policy maker.FINDINGS A diverse stakeholder group of 13 leaders in the fields of public health, digital health, and health care were engaged to reach a consensus on how to implement digital health recommendations to address the challenges of current and future pandemics. Participants reached a consensus on high-priority issues identified within 5 themes: team, transparency and trust, technology, techquity (the strategic development and deployment of technology in health care and health to achieve health equity), and transformation. Each theme contains concrete points of consensus to guide the local, national, and international adoption of digital health to address challenges of current and future pandemics. CONCLUSIONS AND RELEVANCEThe consensus points described for these themes provide a roadmap for the implementation of digital health policy by all stakeholders, including governments. Implementation of these recommendations could have a significant impact by reducing fatalities and uniting countries on current and future battles against pandemics.
The design of personal health informatics tools has traditionally been explored in self-monitoring and behavior change. There is an unmet opportunity to leverage selftracking of individuals and study diseases and health conditions to learn patterns across groups. An open research question, however, is how to design engaging self-tracking tools that also facilitate learning at scale. Furthermore, for conditions that are not well understood, a critical question is how to design such tools when it is unclear which data types are relevant to the disease. We outline the process of identifying design requirements for self-tracking endometriosis, a highly enigmatic and prevalent disease, through interviews (N=3), focus groups (N=27), surveys (N=741), and content analysis of an online endometriosis community (1500 posts, N=153 posters) and show value in triangulating across these methods. Finally, we discuss tensions inherent in designing self-tracking tools for individual use and population analysis, making suggestions for overcoming these tensions.
Background: Hospital performance quality assessments inform patients, providers, payers, and purchasers in making healthcare decisions. These assessments have been developed by government, private and non-profit organizations, and academic institutions. Given the number and variability in available assessments, a knowledge gap exists regarding what assessments are available and how each assessment measures quality to identify top performing hospitals. This study aims to: (a) comprehensively identify current hospital performance assessments, (b) compare quality measures from each methodology in the context of the Institute of Medicine's (IOM) six domains of STEEEP (safety, timeliness, effectiveness, efficiency, equitable, and patient-centeredness), and (c) formulate policy recommendations that improve value-based, patient-centered care to address identified gaps. Methods: A scoping review was conducted using a systematic search of MEDLINE and the grey literature along with handsearching to identify studies that provide assessments of US-based hospital performance whereby the study cohort examined a minimum of 250 hospitals in the last two years (2017-2019). Results: From 3058 unique records screened, 19 hospital performance assessments met inclusion criteria. Methodologies were analyzed across each assessment and measures were mapped to STEEEP. While safety and effectiveness were commonly identified measures across assessments, efficiency, and patient-centeredness were less frequently represented. Equity measures were also limited to risk-and severity-adjustment methods to balance patient characteristics across populations, rather than stand-alone indicators to evaluate health disparities that may contribute to community-level inequities. Conclusions: To further improve health and healthcare value-based decision-making, there remains a need for methodological transparency across assessments and the standardization of consensus-based measures that reflect the IOM's quality framework. Additionally, a large opportunity exists to improve the assessment of health equity in the communities that hospitals serve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.