Ovarian cancer is a lethal malignancy that has not seen a major therapeutic advance in over 30 years. We demonstrate that ovarian cancer exhibits a targetable alteration in iron metabolism. Ferroportin (FPN), the iron efflux pump, is decreased, and transferrin receptor (TFR1), the iron importer, is increased in tumor tissue from patients with high grade but not low grade serous ovarian cancer. A similar profile of decreased FPN and increased TFR1 is observed in a genetic model of ovarian cancer tumor initiating cells (TICs). The net result of these changes is an accumulation of excess intracellular iron and an augmented dependence on iron for proliferation. A forced reduction in intracellular iron reduces the proliferation of ovarian cancer TICs in vitro, and inhibits both tumor growth and intraperitoneal dissemination of tumor cells in vivo. Mechanistic studies demonstrate that iron increases metastatic spread by facilitating invasion through expression of matrix metalloproteases and synthesis of IL6. We show that the iron dependence of ovarian cancer tumor initiating cells renders them exquisitely sensitive in vivo to agents that induce iron-dependent cell death (ferroptosis) as well as iron chelators, and thus creates a metabolic vulnerability that can be exploited therapeutically.
BackgroundRemodeling of the extracellular matrix (ECM) has been implicated in ovarian cancer, and we hypothesize that these alterations may provide a better optical marker of early disease than currently available imaging/screening methods and that understanding their physical manifestations will provide insight into invasion.MethodsFor this investigation we use Second Harmonic Generation (SHG) imaging microcopy to study changes in the structure of the ovarian ECM in human normal and malignant ex vivo biopsies. This method directly visualizes the type I collagen in the ECM and provides quantitative metrics of the fibrillar assembly. To quantify these changes in collagen morphology we utilized an integrated approach combining 3D SHG imaging measurements and bulk optical parameter measurements in conjunction with Monte Carlo simulations of the experimental data to extract tissue structural properties.ResultsWe find the SHG emission attributes (directionality and relative intensity) and bulk optical parameters, both of which are related to the tissue structure, are significantly different in the tumors in a manner that is consistent with the change in collagen assembly. The normal and malignant tissues have highly different collagen fiber assemblies, where collectively, our findings show that the malignant ovaries are characterized by lower cell density, denser collagen, as well as higher regularity at both the fibril and fiber levels. This further suggests that the assembly in cancer may be comprised of newly synthesized collagen as opposed to modification of existing collagen.ConclusionsDue to the large structural changes in tissue assembly and the SHG sensitivity to these collagen alterations, quantitative discrimination is achieved using small patient data sets. Ultimately these measurements may be developed as intrinsic biomarkers for use in clinical applications.
Endometrial carcinoma is the most common gynecologic malignancy. A thorough understanding of the epidemiology, pathophysiology, and management strategies for this cancer allows the obstetrician-gynecologist to identify women at increased risk, contribute toward risk reduction, and facilitate early diagnosis. The Society of Gynecologic Oncology's Clinical Practice Committee has reviewed the literature and created evidence-based practice recommendations for diagnosis and treatment. This article examines: • Risk factors, including genetic predisposition • Diagnostic and metastatic evaluation • Surgical management of early and advanced cancer, including lymphadenectomy in early cancer.
This article reviews progress in chemopreventive drug development, especially data and concepts that are new since the 2002 AACR report on treatment and prevention of intraepithelial neoplasia. Molecular biomarker expressions involved in mechanisms of carcinogenesis and genetic progression models of intraepithelial neoplasia are discussed and analyzed for how they can inform mechanism-based, molecularly targeted drug development as well as risk stratification, cohort selection, and end-point selection for clinical trials.We outline the concept of augmenting the risk, mechanistic, and disease data from histopathologic intraepithelial neoplasia assessments with molecular biomarker data. Updates of work in 10 clinical target organ sites include new data on molecular progression, significant completed trials, new agents of interest, and promising directions for future clinical studies. This overview concludes with strategies for accelerating chemopreventive drug development, such as integrating the best science into chemopreventive strategies and regulatory policy, providing incentives for industry to accelerate preventive drugs, fostering multisector cooperation in sharing clinical samples and data, and creating public-private partnerships to foster new regulatory policies and public education.In most epithelial tissues, accumulating mutations (i.e., genetic progression) and loss of cellular control functions cause progressive phenotypic changes from normal histology to early precancer [intraepithelial neoplasia (IEN)] to increasingly severe IEN to superficial cancer and finally to invasive disease. This process can be relatively aggressive in some settings (e.g., in the presence of a DNA repair -deficient genotype) but generally occurs relatively slowly over years and decades. Cancer chemoprevention can be defined as the prevention of cancer or treatment of identifiable precancers (defined as histopathologic or molecular IEN). The long latency to invasive cancer is a major scientific opportunity but also an economic obstacle to showing the clinical benefit of candidate chemopreventive drugs. Therefore, an important component of chemopreventive agent development research in recent years has been to identify earlier (than cancer) end points or biomarkers that accurately predict an agent's clinical benefit or cancer incidence -reducing effect. In many cancers, IEN is an early end point. In 2002, the AACR IEN Task Force recommended focusing chemopreventive drug development on IEN because of the close association between IEN and invasive cancer and because reducing IEN burden can benefit patients by reducing cancer risk and/or the need for invasive interventions (1). The IEN Task Force proposed several practical and feasible clinical trial designs for developing new agents to treat and prevent precancer in nine cancer target organs.
Pertuzumab is well tolerated with a RR of 4.3% in heavily-pretreated OC patients. Further studies on pHER2 as a diagnostic are warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.