This paper evaluates the development of automated assembly techniques for discrete lattice structures using a multiaxis gantry type CNC machine. These lattices are made of discrete components called "digital materials." We present the development of a specialized end effector that works in conjunction with the CNC machine to assemble these lattices. With this configuration we are able to place voxels at a rate of 1.5 per minute.The scalability of digital material structures due to the incremental modular assembly is one of its key traits and an important metric of interest. We investigate the build times of a 5x5 beam structure on the scale of 1 meter (325 parts), 10 meters (3,250 parts), and 30 meters (9,750 parts). Utilizing the current configuration with a single end effector, performing serial assembly with a globally fixed feed station at the edge of the build volume, the build time increases according to a scaling law of n 4 , where n is the build scale. Build times can be reduced significantly by integrating feed systems into the gantry itself, resulting in a scaling law of n 3 . A completely serial assembly process will encounter time limitations as build scale increases.Automated assembly for digital materials can assemble high performance structures from discrete parts, and techniques such as built in feed systems, parallelization, and optimization of the fastening process will yield much higher throughput.
A large fraction of safety incidents occurs on the ground during airport surface operations. Although these incidents are mostly non-fatal with a few exceptions, they are high profile incidents that remain a source of concern for the National Transportation Safety Board (NTSB), the Federal Aviation Administration (FAA), major airlines, and other stakeholders of the National Airspace System (NAS). These incidents have historically been mitigated by implementing changes to regulations, policies, and procedures over time. This approach has minimized but not eliminated the risk of occurrence of safety incidents. It is thus important to develop integrated techniques to assess, model, and prevent these incidents by analyzing the risk and likelihood of occurrence and communicating results of the analysis to decision-making personnel who can mitigate and prevent incidents in real time. The work presented in this paper builds on a previously developed architecture for safety, Real-Time Safety Monitoring (RTSM), to enable monitoring and prediction of the safety of the NAS. In the RTSM framework, hazards to flight are translated to safety metrics such as wake vortex encounters or loss of separation, that can be modeled and analyzed offline and also predicted and monitored in real time (online). The intent of this paper is to integrate predictable incidents that occur during surface and ground operations into the safety portfolio of the RTSM project by (i) identifying suitable information sources from which ground incidents can be studied, (ii) developing safety metrics correlated with surface operations, and (iii) recommending suitable data sources that can be quantified and used for the computation of pertinent safety metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.