The xylem-dwelling plant pathogen Ralstonia solanacearum changes the chemical composition of host xylem sap during bacterial wilt disease. The disaccharide trehalose, implicated in stress tolerance across all kingdoms of life, is enriched in sap from R. solanacearum–infected tomato plants. Trehalose in xylem sap could be synthesized by the bacterium, the plant, or both. To investigate the source and role of trehalose metabolism during wilt disease, we evaluated the effects of deleting the three trehalose synthesis pathways in the pathogen: TreYZ, TreS, and OtsAB, as well as its sole trehalase, TreA. A quadruple treY/treS/otsA/treA mutant produced 30-fold less intracellular trehalose than the wild-type strain missing the trehalase enzyme. This trehalose-nonproducing mutant had reduced tolerance to osmotic stress, which the bacterium likely experiences in plant xylem vessels. Following naturalistic soil-soak inoculation of tomato plants, this triple mutant did not cause disease as well as wild-type R. solanacearum. Further, the wild-type strain out-competed the trehalose-nonproducing mutant by over 600-fold when tomato plants were coinoculated with both strains, showing that trehalose biosynthesis helps R. solanacearum overcome environmental stresses during infection. An otsA (trehalose-6-phosphate synthase) single mutant behaved similarly to ΔtreY/treS/otsA in all experimental settings, suggesting that the OtsAB pathway is the dominant trehalose synthesis pathway in R. solanacearum.
Oxygen levels in vivo are autonomously regulated by a supply-demand balance, which can be altered in disease states. However, the oxygen levels of in vitro cell culture systems, particularly microscale cell culture, are typically dominated by either supply or demand. Further, the oxygen microenvironment in these systems is rarely monitored or reported. Here, a method to establish and dynamically monitor autonomously regulated oxygen microenvironments (AROM) using an oil overlay in an open microscale cell culture system is presented. Using this method, the oxygen microenvironment is dynamically regulated via the supply-demand balance of the system. Numerical simulation and experimental validation of oxygen transport within multi-liquid-phase, microscale culture systems involving a variety of cell types, including mammalian, fungal, and bacterial cells are presented. Finally, AROM is applied to establish a coculture between cells with disparate oxygen demands-primary intestinal epithelial cells (oxygen consuming) and Bacteroides uniformis (an anaerobic species prevalent in the human gut).
Pancreatic cancer remains one of the most lethal of all human malignancies with its incidence nearly equaling its mortality rate. Therefore, it's crucial to identify newer mechanism-based agents and targets to effectively manage pancreatic cancer. Plant-derived agents/drugs have historically been useful in cancer therapeutics. Sanguinarine is a plant alkaloid with anti-proliferative effects against cancers, including pancreatic cancer. This study was designed to determine the mechanism of sanguinarine's effects in pancreatic cancer with a hope to obtain useful information to improve the therapeutic options for the management of this neoplasm. We employed a quantitative proteomics approach to define the mechanism of sanguinarine's effects in human pancreatic cancer cells. Proteins from control and sanguinarine-treated pancreatic cancer cells were digested with trypsin, run by nano-LC/MS/MS, and identified with the help of Swiss-Prot database. Results from replicate injections were processed with the SIEVE software to identify proteins with differential expression. We identified 37 differentially expressed proteins (from a total of 3107), which are known to be involved in variety of cellular processes. Four of these proteins (IL33, CUL5, GPS1 and DUSP4) appear to occupy regulatory nodes in key pathways. Further validation by qRT-PCR and immunoblot analyses demonstrated that the dual specificity phosphatase-4 (DUSP4) was significantly upregulated by sanguinarine in BxPC-3 and MIA PaCa-2 cells. Sanguinarine treatment also caused down-regulation of HIF1α and PCNA, and increased cleavage of PARP and Caspase-7. Taken together, sanguinarine appears to have pleotropic effects, as it modulates multiple key signaling pathways, supporting the potential usefulness of sanguinarine against pancreatic cancer.
Oxygen levels in vivo are autonomously regulated by a supply-demand balance, which can be altered in disease states. However, the oxygen levels of in vitro cell culture systems, particularly microscale cell culture, are typically dominated by either supply or demand. Further, the oxygen microenvironment in these systems are rarely monitored or reported. Here, we present a method to establish and dynamically monitor autonomously regulated oxygen microenvironments (AROM) using an oil overlay in an open microscale cell culture system. Using this method, the oxygen microenvironment is dynamically regulated via a supply-demand balance of the system. We simulate the kinetics of oxygen diffusion in multiliquid-phase microsystems on COMSOL Multiphysics and experimentally validate the method using a variety of cell types including mammalian, fungal and bacterial cells. Finally, we demonstrate the utility of this method to establish a co-culture between primary intestinal epithelial cells and a highly prevalent human gut species Bacteroides uniformis.
Autonomously Regulated Oxygen Microenvironments In article number 2104510 , Chao Li, Ophelia S. Venturelli, David J. Beebe, and co‐workers introduce a Goldilocks principle‐based method, named autonomously regulated oxygen microenvironments (AROM), to recapitulate the oxygen homeostasis and kinetics seen in vivo in microscale cell culture. Fundamentally different from the traditional, operator‐centered oxygen control, i.e., the operator‐defined oxygen microenvironment to which the cells are exposed passively, AROM allows cells to self‐regulate (or autonomously regulate) and respond to the oxygen microenvironment via a supply‐demand balance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.