Although mutations that activate the Hedgehog (Hh) signalling pathway have been linked to several types of cancer, the molecular and cellular basis of Hh's ability to induce tumour formation is not well understood. We identified a mutation in patched (ptc), an inhibitor of Hh signalling, in a genetic screen for regulators of the Retinoblastoma (Rb) pathway in Drosophila. Here we show that Hh signalling promotes transcription of Cyclin E and Cyclin D, two inhibitors of Rb, and principal regulators of the cell cycle during development in Drosophila. Upregulation of Cyclin E expression, accomplished through binding of Cubitus interruptus (Ci) to the Cyclin E promoter, mediates the ability of Hh to induce DNA replication. Upregulation of Cyclin D expression by Hh mediates the distinct ability of Hh to promote cellular growth. The discovery of a direct connection between Hh signalling and principal cell-cycle regulators provides insight into the mechanism by which deregulated Hh signalling promotes tumour formation.
New mosquito control strategies are vitally needed to address established arthropod-borne infectious diseases such as dengue and yellow fever and emerging diseases such as Zika and chikungunya, all of which are transmitted by the disease vector mosquito Aedes aegypti. In this investigation, Saccharomyces cerevisiae (baker’s yeast) was engineered to produce short hairpin RNAs (shRNAs) corresponding to the Aedes aegypti orthologs of fasciculation and elongation protein zeta 2 (fez2) and leukocyte receptor cluster (lrc) member, two genes identified in a recent screen for A. aegypti larval lethal genes. Feeding A. aegypti with the engineered yeasts resulted in silenced target gene expression, disrupted neural development, and highly significant larval mortality. Larvicidal activities were retained following heat inactivation and drying of the yeast into tabular formulations that induced >95% mortality and were found to attract adult females to oviposit. These ready-to-use inactivated yeast interfering RNA tablets may one day facilitate the seamless integration of this new class of lure-and-kill species-specific biorational mosquito larvicides into integrated mosquito control programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.