Riboswitches are regulatory RNAs located in the 5′-untranslated region of mRNA sequences that recognize and bind to small molecules and regulate the expression of downstream genes. Creation of synthetic riboswitches to novel ligands depends on the ability to monitor riboswitch activation in the presence of analyte. In our work, we have coupled a synthetic riboswitch to an optical reporter assay based on fluorescence resonance energy transfer (FRET) between two genetically encoded fluorescent proteins. The theophylline-sensitive riboswitch was placed upstream of the Tobacco Etch Virus (TEV) protease coding sequence. Our FRET construct was composed of eGFP and a nonfluorescent yellow fluorescent protein mutant called REACh (for resonance energy-accepting chromoprotein) connected with a peptide linker containing a TEV protease cleavage site. Addition of theophylline to the E. coli cells activates the riboswitch and initiates the translation of mRNA. Synthesized protease cleaves the linker in the FRET-based fusion protein causing a change in the fluorescence signal. By this method, we observed an 11-fold increase in cellular extract fluorescence in the presence of theophylline. The advantage of using an eGFP-REACh pair is the elimination of acceptor fluorescence. This leads to an improved detection of FRET via better signal-to-noise ratio, allowing us to monitor riboswitch activation in a wide range of analyte concentrations from 0.01 to 2.5 mM.
Riboswitches are RNA sequences that regulate expression of associated downstream genes in response to the presence or absence of specific small molecules. A novel riboswitch that activates protein translation in E. coli cells in response to 2,4-dinitrotoluene (DNT) has been engineered. A plasmid library was constructed by incorporation of 30 degenerate bases between a previously described trinitrotoluene aptamer and the ribosome binding site. Screening was performed by placing the riboswitch library upstream of the Tobacco Etch Virus (TEV) protease coding sequence in one plasmid; a second plasmid encoded a FRET-based construct linked with a peptide containing the TEV protease cleavage site. Addition of DNT to bacterial culture activated the riboswitch, initiating translation of TEV protease. In turn, the protease cleaved the linker in the FRET-based fusion protein, causing a change in fluorescence. This new riboswitch exhibited a 10-fold increase in fluorescence in the presence of 0.5 mM DNT compared to the system without target.
D-Serine, an endogenous amino acid, is involved in many physiological processes through its interaction with the glycine binding site of the N-methyl-D-aspartate (NMDA) receptor. It has important roles in development, learning, and cell death signaling. Recent evidence suggests that decreased function of the NMDA receptor is related to the etiology of schizophrenia, and the use of D-serine as add-on therapy is beneficial in alleviating the symptoms of treatment-refractory schizophrenia. The NMDA receptor also plays a major role in neuronal cell death and neurodegeneration mediated by excitatory amino acid toxicity in ischemia, epilepsy, and trauma. Due to its co-activator function, D-serine can markedly potentiate NMDA-mediated excitotoxicity. To investigate potential adverse effects of D-serine treatment, we investigated gene expression changes in the forebrain of male F-344 rats treated with a single intraperitoneal injection of D-serine (5, 20, 50, 200, or 500 mg/kg) at 96 h post-treatment. Gene expression profiling using Affymetrix Rat Genome 230 2.0 arrays revealed that D-serine treatment resulted in up- and down-regulation of 134 and 52 genes, respectively, based on the common genes identified using three statistical methods, i.e. t test (p < 0.01 over two consecutive doses), ANOVA (with adjusted Bonferonni correction for multiple testing) and significance analysis of microarray (SAM). Self organized map (SOM) clustering analysis of the differentially expressed genes showed two clusters, one with all 134 up-regulated probe sets and the other with all 52 down-regulated probe sets. The dose-response pattern of the down-regulated cluster showed nearly a perfect mirror image of that of the up-regulated one. Gene ontology analysis revealed that pathways implicated in neuronal functions and/or neurodegenerative disorders are over-represented among the differentially expressed genes. Specifically, genes involved in vesicle-mediated transport, endocytosis, ubiquitin conjugation pathway, regulation of actin filament polymerization/depolymerization, focal adhesion, Wnt signaling, and insulin signaling were up-regulated, while genes involved in RNA metabolism/splicing/processing and Notch signaling were down-regulated. Consistent with this finding, pathway analysis using GenMAPP showed a significant number of differentially expressed genes in these pathways. In addition, the GenMAPP result also showed activation of the signaling pathways of several proinflammatory cytokines (including IL-2, IL-3, IL-5, IL-6 and TNF-alpha), which might suggest the onset of neuroinflammation. Biological association network analysis showed that several nuclear factors implicated in transcription regulation (including Taf1, Max, Myc, and Hnf4a) are highly connected to a large number of up-regulated genes. While the transcript levels of these transcription factors were not changed, their connections to Ddx3x, a gene involved in mRNA processing and translation initiation, raise the possibility that they may be up-regulated at the post-trans...
Riboswitches are a type of natural genetic control element that use untranslated sequence in the RNA to recognize and bind to small molecules that regulate expression of that gene. Creation of synthetic riboswitches to novel ligands depends on the ability to screen for analyte binding sensitivity and specificity. In our work, we have coupled a synthetic riboswitch to an optical reporter assay based on fluorescence resonance energy transfer (FRET) between two geneticallycoded fluorescent proteins. Specifically, a theophylline-sensitive riboswitch was placed upstream of the Tobacco Etch Virus (TEV) protease coding sequence, and a FRET-based construct, BFP-eGFP or eGFP-REACh, was linked by a peptide encoding the recognition sequence for TEV protease. Cells expressing the riboswitch showed a marked optical difference in fluorescence emission in the presence of theophylline. However, the BFP-eGFP FRET pair posses significant optical background that reduces the sensitivity of a FRET-based assay. To improve the optical assay, we designed a nonfluorescent yellow fluorescent protein (YFP) mutant called REACh (for Resonance Energy-Accepting Chromoprotein) as the FRET acceptor for eGFP. The advantage of using an eGFP-REACh pair is the elimination of acceptor fluorescence which leads to an improved detection of FRET via better signal-to-noise ratio. The EGFP-REACh fusion protein was constructed with the TEV protease cleavage site; thus upon TEV translation, cleavage occurs diminishing REACh quenching and increasing eGFP emission resulting in a 4.5-fold improvement in assay sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.