Draft method C is a standardized method for quantifying E. coli densities in recreational waters using quantitative polymerase chain reaction (qPCR). The method includes a Microsoft Excel workbook that automatically screens for poor-quality data using a set of previously proposed acceptance criteria, generates weighted linear regression (WLR) composite standard curves, and calculates E. coli target gene copies in test samples. We compared standard curve parameter values and test sample results calculated with the WLR model to those from a Bayesian master standard curve (MSC) model using data from a previous multi-lab study. The two models’ mean intercept and slope estimates from twenty labs’ standard curves were within each other’s 95% credible or confidence intervals for all labs. E. coli gene copy estimates of six water samples analyzed by eight labs were highly overlapping among labs when quantified with the WLR and MSC models. Finally, we compared multiple labs’ 2016–2018 composite curves, comprised of data from individual curves where acceptance criteria were not used, to their corresponding composite curves with passing acceptance criteria. Composite curves developed from passing individual curves had intercept and slope 95% confidence intervals that were often narrower than without screening and an analysis of covariance test was passed more often. The Excel workbook WLR calculation and acceptance criteria will help laboratories implement draft method C for recreational water analysis in an efficient, cost-effective, and reliable manner.
Michigan's water-quality standards specify that E. coli concentrations at bathing beaches must not exceed 300 E. coli per 100 mL, as determined by the geometric mean of culture-based concentrations in three or more representative samples from a given beach on a given day. Culture-based analyses require 18-24 h to complete, so results are not available for issuing beach notifications (advisories or closings) until the day following collection. This one-day delay is problematic because E. coli concentrations at beaches can change markedly from one day to the next. qPCR-based E. coli concentrations, by contrast, can be obtained in only 3-4 h, making same-day beach notifications possible. Michigan has proposed a qPCR threshold value (qTV) for E. coli of 1.863 log10 gene copies per reaction as a potential equivalent value to the state standard, based on statistical analyses of a set of training data from 2016-2018. The main purpose of the present study is to assess the validity of the proposed qTV by determining whether the implied qPCR-based beach notification decisions agree well with culture-based decisions on two sets of test data (from 2016-2018 and 2019-2020), and whether performance of the proposed threshold is similar on the test and training data. The results show that performance of the proposed qTV on both sets of test data was consistently good (e.g., 95% agreement with culture-based beach notification decisions during 2019-2020) and was at least as good as its performance on the training data set, supporting its use as an equivalent value to the state standard.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.