Background: Antimicrobial resistance (AMR) remains a global health challenge, as bacteria display increasing resistance to last-resort antibiotics such as carbapenems. Enterobacter cloacae are evolving and developing high level of resistance to carbapenems. With increasing AMR, availability of antibiotics for treatment dwindles, hence a need to complement antibiotics to enhance activity or reduce the level of resistance. This study explored the use of calcium ions in attenuating bacterial resistance to carbapenems. Method: E. cloacae strains isolated from hospital fomites and air were subjected to antimicrobial susceptibility testing with carbapenem antibiotics (imipenem, meropenem, doripenem and ertapenem) using the disc diffusion ( E. coli ATCC 25922 as control). Growth profile, Ca-Adjusted assay and time-kill curve of the strains was determined in the presence and absence of carbapenem antibiotics following a calcium stress assay. Results: Growth profile showed that all the E. cloacae strains grew markedly well at 37°C relative to ATCC 25922 and all strains displayed 80% to 100% level of resistance to tested antibiotics. The growth rate of the strains in the presence of the antibiotics was comparable to the growth rate in the absence of carbapenems. Conditional growth stress with calcium ions showed a 50% reduction in the level of resistance with doripenem displaying the lowest level of reduction and ertapenem, the highest. Discussion: The study showed that E. cloacae strains displayed high levels of resistance to carbapenems, increasing the possibility of treatment failure. Challenging strains with calcium prior to antibiotic treatment led to a significant reduction in level of resistance, indicating that calcium ions could affect bacterial strains during antibiotic activity leading to reduction in level of resistance. Conclusion: Calcium supplement could potentiate carbapenem effectiveness and reduce bacterial AMR.
Mycobacterium ulcerans is the causative agent of Buruli ulcer – a necrotizing skin infection. As an environmental pathogen, it has developed stress response mechanisms for survival. Similar to endospore formation in M. marinum, it is likely that M. ulcerans employs sporulation mechanisms for its survival and transmission. In this review, we modeled possible transmission routes and patterns of M. ulcerans from the environment to its host. We provided insights into the evolution of M. ulcerans and its genomic profiles. We discuss reservoirs of M. ulcerans as an environmental pathogen and its environmental survival. We comprehensively discuss sporulation as a possible stress response mechanism and modelled endospore formation in M. ulcerans. At last, we highlighted sporulation associated markers, which upon expression trigger endospore formation.
Sporulating bacteria such as Bacillus spp. have contributed to severity of opportunistic hospital acquired infections, including postoperative wounds and respiratory tract infections. This study determines the expression profiles of sporulation markers in multidrug-resistant Bacillus spp. isolated from Ghanaian hospital environments. Antimicrobial resistance (AMR) profiles of the bacteria were determined with disk diffusion and broth microdilution. Primer-specific polymerase chain reaction (PCR) amplification was used to profile the sporulation markers, and quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used for the expression of the sporulation markers at different antibiotic concentrations. The strains are multidrug resistant (70–100%) to at least two of the eight classes of the antibiotics tested including cephalosporins, penicillin, aminoglycosides, and glycopeptide. The strains showed different resistance patterns to all the tested antibiotics, which might indicate diverse resistance mechanisms. Common ( spoVK spoVE, spoJ, and sigF) and not commonly ( sigJ, soJ, yrbC, and yjcE) reported sporulation markers were detected in the strains. The study showed an association of the sporulation markers with AMR as indicated by their expression profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.