This thesis examines the relationship between life satisfaction (e.g., family, friends, etc.) and eating behaviors/weight perceptions of 723 college students. Participants completed the survey and data were analyzed using correlations and logistic and multinomial regressions (genders analyzed separately). Satisfaction with Self and Physical Appearance were the strongest correlates with eating variables (-.528 to .369). Worrying about weight (-.528 to-.104), selfdescribed weight (-.407 to-.129), and binging (.110 to .186) were significantly correlated with all LS domains (p < .05). Practitioners should focus on Physical Appearance and Self as entry points for interventions. Researchers should explore the utilization of social norming techniques for shifting the concept of the "ideal" body to one that is more appropriate. Future research should examine the hypothesis that social support may mediate the relationship between life dissatisfaction and poor weight perceptions and dieting behaviors because of previous literature and the results from this study combined.
BackgroundIn the event of biocrimes or infectious disease outbreaks, high-resolution genetic characterization for identifying the agent and attributing it to a specific source can be crucial for an effective response. Until recently, in-depth genetic characterization required expensive and time-consuming Sanger sequencing of a few strains, followed by genotyping of a small number of marker loci in a panel of isolates at or by gel-based approaches such as pulsed field gel electrophoresis, which by necessity ignores most of the genome. Next-generation, massively parallel sequencing (MPS) technology (specifically the Applied Biosystems sequencing by oligonucleotide ligation and detection (SOLiD™) system) is a powerful investigative tool for rapid, cost-effective and parallel microbial whole-genome characterization.ResultsTo demonstrate the utility of MPS for whole-genome typing of monomorphic pathogens, four Bacillus anthracis and four Yersinia pestis strains were sequenced in parallel. Reads were aligned to complete reference genomes, and genomic variations were identified. Resequencing of the B. anthracis Ames ancestor strain detected no false-positive single-nucleotide polymorphisms (SNPs), and mapping of reads to the Sterne strain correctly identified 98% of the 133 SNPs that are not clustered or associated with repeats. Three geographically distinct B. anthracis strains from the A branch lineage were found to have between 352 and 471 SNPs each, relative to the Ames genome, and one strain harbored a genomic amplification. Sequencing of four Y. pestis strains from the Orientalis lineage identified between 20 and 54 SNPs per strain relative to the CO92 genome, with the single Bolivian isolate having approximately twice as many SNPs as the three more closely related North American strains. Coverage plotting also revealed a common deletion in two strains and an amplification in the Bolivian strain that appear to be due to insertion element-mediated recombination events. Most private SNPs (that is, a, variant found in only one strain in this set) selected for validation by Sanger sequencing were confirmed, although rare false-positive SNPs were associated with variable nucleotide tandem repeats.ConclusionsThe high-throughput, multiplexing capability, and accuracy of this system make it suitable for rapid whole-genome typing of microbial pathogens during a forensic or epidemiological investigation. By interrogating nearly every base of the genome, rare polymorphisms can be reliably discovered, thus facilitating high-resolution strain tracking and strengthening forensic attribution.
The ability to characterize SNPs is an important aspect of many clinical diagnostic, genetic and evolutionary studies. Here, we designed a multiplexed SNP genotyping method to survey a large number of phylogenetically informative SNPs within the genome of the bacterium Bacillus anthracis. This novel method, capillary electrophoresis universal-tail mismatch amplification mutation assay (CUMA), allows for PCR multiplexing and automatic scoring of SNP genotypes, thus providing a rapid, economical, and higher-throughput alternative to more expensive SNP genotyping techniques. CUMA delivered accurate B. anthracis SNP genotyping results and when multiplexed, saved reagent costs by more than 80% compared with TaqMan real-time PCR. When real-time PCR technology and instrumentation is unavailable or the reagents are cost-prohibitive, CUMA is a powerful alternative for SNP genotyping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.