Habitat heterogeneity can generate intraspecific diversity through local adaptation of populations. While it is becoming increasingly clear that population diversity can increase stability in species abundance, less is known about how population diversity can benefit consumers that can integrate across population diversity in their prey. Here we demonstrate cascading effects of thermal heterogeneity on trout-salmon interactions in streams where rainbow trout rely heavily on the seasonal availability of anadromous salmon eggs. Water temperature in an Alaskan stream varied spatially from 5 degrees C to 17.5 degrees C, and spawning sockeye salmon showed population differentiation associated with this thermal heterogeneity. Individuals that spawned early in cool regions of the 5 km long stream were genetically differentiated from those spawning in warmer regions later in the season. Sockeye salmon spawning generates a pulsed resource subsidy that supports the majority of seasonal growth in stream-dwelling rainbow trout. The spatial and temporal structuring of sockeye salmon spawn timing in our focal stream extended the duration of the pulsed subsidy compared to a thermally homogeneous stream with a single population of salmon. Further, rainbow trout adopted movement strategies that exploited the multiple pulses of egg subsidies in the thermally heterogeneous stream. Fish that moved to track the resource pulse grew at rates about 2.5 times higher than those that remained stationary or trout in the reference stream with a single seasonal pulse of eggs. Our results demonstrate that habitat heterogeneity can have important effects on the population diversity of dominant species, and in turn, influence their value to species that prey upon them. Therefore, habitat homogenization may have farther-reaching ecological effects than previously considered.
The strict homing of sockeye salmon Oncorhynchus nerka results in reproductively isolated populations that often spawn in close proximity and share rearing habitat. High spawning fidelity enables these populations to adapt to local conditions, resulting in a wide range of life history characteristics and genetic variation within individual watersheds. The Wood River system in southwestern Alaska provides a pristine, well‐studied system in which to examine fine‐scale population structure and its influences on juvenile life histories. Adult sockeye salmon spawn in lake beaches, rivers, and small tributaries throughout this watershed, and juveniles rear in five nursery lakes. We genotyped 30 spawning populations and 6,066 migrating smolts at 45 single nucleotide polymorphism loci, two of which are candidates for positive selection in the study system. We show that there is significant genetic structure (FST = 0.032) in the Wood River lakes and that divergence is generally related to spawning rather than nursery habitat (hierarchical analysis of molecular variance; P < 0.05). Four groups of populations were identified based on genetic structure and used to determine the composition of unknown mixtures of migrating smolts using a Bayesian modeling framework. We demonstrate that smolt migration timing is related to genetic structure; stream and river populations dominate catches in early June, while beach spawners and the populations in Lake Kulik are more prevalent from mid‐June to early September. Age‐2 smolts are primarily produced by the Lake Kulik and beach spawning populations, showing that genetic differences may reflect divergent freshwater and migration life history strategies. These results indicate that local adaptation to spawning habitat influences genetic divergence in the Wood River lakes, affecting both adult and juvenile life stages of sockeye salmon.
We describe the use of high-resolution melting (HRM), a recent enhancement to traditional DNA melting analyses for the characterization of polymerase chain reaction products, in the identification of 11 novel single-nucleotide polymorphisms (SNPs) for distinguishing between rainbow trout Oncorhynchus mykiss and cutthroat trout O. clarkii. Single-nucleotide polymorphisms provide an important tool for species identification in studies of hybridization and introgression between these two species, but until now the time-consuming and costly nature of DNA sequencing has limited identification of new markers. The ability of HRM to accurately discern nucleotide changes in a DNA sequence make it a cost-and time-effective alternative to traditional sequencing for the detection of novel SNPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.