In order to study the effect of Tehran municipal solid wastes compost on manganese accumulation in soil and to determine its concentration in any readily available plant forms (exchangeable and carbonates-bonded), Mn-oxides bonded fraction, organic matter bonded fraction, and residual fraction in a calcareous soil, a factorial experiment based on completely randomized block design (RCBD) was conducted in research field of Shahed university at different levels of municipal solid wastes compost (0, 15, 30, and 60 ton/ha) as first factor and application times (one- or two-year compost application) as second factor in three replications. Results showed that, by increasing compost level, total Mn concentration, DTPA-extractable concentration, and amounts existing in all five fractions were increased, so lowest and highest amounts of Mn were observed in control and 60 ton/ha compost application. Based on results from Mn fractionation using Tessier consecutive extraction method, Mn fractions in all samples were in the following order: residual > Fe-Mn oxides > carbonates-bonded > organic matter-bonded ≫ exchangeable fractions in which residual fraction (RE) at first and second year was dominant rather than other fractions by 34.28–43.04 and 34.28–49.48 percent, respectively. Mn concentration in Fe-Mn oxides-bonded fraction at both years was considerable. Mn amounts in Fe-Mn oxides- bonded, application times were decreased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.