The hydrodynamic characteristics of the liquid-liquid system of toluene-water in a pilot plant spray extraction column were experimentally determined. The experimental data for hydrodynamic characteristics such as the dispersed phase holdup, mean droplet size, and the axial dispersion coefficient were obtained. The dispersed phase superficial velocity had a great influence on toluene holdup. At the same time, a strong effect of the continuous phase superficial velocity on the dispersed phase holdup was evident. The dispersed phase holdup had a tendency to increase when the ratio of the dispersed phase superficial velocity and characteristic velocity increased. The Sauter mean droplet diameter decreased with increasing dispersed phase superficial velocity when the continuous phase superficial velocity remained constant. In contrast, it was not affected by the changes in the continuous phase superficial velocity while the dispersed phase superficial velocity remained constant. It was concluded that the Peclet number increased as a result of an increase of the Reynolds number.
This paper presents the results of the determination of the hydrodynamic characteristics and mass transfer in the pilot plate absorption column. The experimental values of the pressure drop in the countercurrent flow of air and water through the column were obtained. The graphic dependence of the pressure drop of air per unit height of the layer of packing (ΔP/h) on the apparent air velocity (Ug) through the dry charge was shown to be in the form of a quadratic function. From the graphical function which shows the dependence of the pressure drop per unit height of the layer of filling (ΔP/m) on the apparent air velocity during the countercurrent flow of the phases (water and air), three fields of the interaction of the phases were observed: a) the area of low load, at low apparent air velocities, b) the area of high load, at higher air velocities, and c) the flooding area, when the liquid completely fills the cavities and the working gas in them starts bubbling. The overall mass transfer coefficient (Kg) of the air-CO 2-water system depends on the flow rate of the gaseous phase and the composition of the starting gas mixture (air-CO 2). With the increase in the total gas flow rate, with a constant composition of the starting gas mixture and constant fluid flow, the overall mass transfer coefficient increases. Increasing the amount of CO 2 in the starting gas mixture at a constant flow rate of fluid and a constant ratio of the molar flow of the inert in the liquid and the gas-phase (L'/G') decreases the overall mass transfer coefficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.