The 7SK ribonucleoprotein (RNP) is a dynamic and multifunctional regulator of RNA Polymerase II (RNAPII) transcription in metazoa. Comprised of the non-coding 7SK RNA, core proteins, and numerous accessory proteins, the most well-known 7SK RNP function is the sequestration and inactivation of the positive transcription elongation factor b (P-TEFb). More recently, 7SK RNP has been shown to regulate RNAPII transcription through P-TEFb-independent pathways. Due to its fundamental role in cellular function, dysregulation has been linked with human diseases including cancers, heart disease, developmental disorders, and viral infection. Significant advances in 7SK RNP structural biology have improved our understanding of 7SK RNP assembly and function. Here, we review progress in understanding the structural basis of 7SK RNA folding, biogenesis, and RNP assembly.
Structural plasticity is integral to RNA function; however, there are currently few methods to quantitatively resolve RNAs that have multiple structural states. NMR spectroscopy is a powerful approach for resolving conformational ensembles but is size-limited. Chemical probing is well-suited for large RNAs but provides limited structural and no kinetics information. Here, we integrate the two approaches to visualize a two-state conformational ensemble for the central stem-loop 3 (SL3) of 7SK RNA, a critical element for 7SK RNA function in transcription regulation. We find that the SL3 distal end exchanges between two equally populated yet structurally distinct states in both isolated SL3 constructs and full-length 7SK RNA. We rationally designed constructs that lock SL3 into a single state and demonstrate that both chemical probing and NMR data fit to a linear combination of the two states. Comparison of vertebrate 7SK RNA sequences shows conservation of both states, suggesting functional importance. These results provide new insights into 7SK RNA structural dynamics and demonstrate the utility of integrating chemical probing with NMR spectroscopy to gain quantitative insights into RNA conformational ensembles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.