Corticokinematic coherence (CKC) between magnetoencephalographic and movement signals using an accelerometer is useful for the functional localization of the primary sensorimotor cortex (SM1). However, it is difficult to determine the tongue CKC because an accelerometer yields excessive magnetic artifacts. Here, we introduce a novel approach for measuring the tongue CKC using a deep learning-assisted motion capture system with videography, and compare it with an accelerometer in a control task measuring finger movement. Twelve healthy volunteers performed rhythmical side-to-side tongue movements in the whole-head magnetoencephalographic system, which were simultaneously recorded using a video camera and examined using a deep learning-assisted motion capture system. In the control task, right finger CKC measurements were simultaneously evaluated via motion capture and an accelerometer. The right finger CKC with motion capture was significant at the movement frequency peaks or its harmonics over the contralateral hemisphere; the motion-captured CKC was 84.9% similar to that with the accelerometer. The tongue CKC was significant at the movement frequency peaks or its harmonics over both hemispheres. The CKC sources of the tongue were considerably lateral and inferior to those of the finger. Thus, the CKC with deep learning-assisted motion capture can evaluate the functional localization of the tongue SM1.
Measuring the corticokinematic coherence (CKC) between magnetoencephalographic and movement signals using an accelerometer can evaluate the functional localization of the primary sensorimotor cortex (SM1) of the upper limbs. However, it is difficult to determine the tongue CKC because an accelerometer yields excessive magnetic artifacts. We introduce and validate a novel approach for measuring the tongue CKC using a deep learning-assisted motion capture system with videography, and compare it with an accelerometer in a control task measuring finger movement. Twelve healthy volunteers performed rhythmical side-to-side tongue movements in the whole-head magnetoencephalographic system, which were simultaneously recorded using a video camera and examined offline using a deep learning-assisted motion capture system. In the control task, right finger CKC measurements were simultaneously evaluated via motion capture and an accelerometer. The right finger CKC with motion capture was significant at the movement frequency peaks or its harmonics over the contralateral hemisphere; the motion-captured CKC was 84.9% similar to that with the accelerometer. The tongue CKC was significant at the movement frequency peaks or its harmonics over both hemispheres, with no difference between the left and right hemispheres. The CKC sources of the tongue were considerably lateral and inferior to those of the finger. Thus, the CKC based on deep learning-assisted motion capture can evaluate the functional localization of the tongue SM1. In this approach, because no devices are placed on the tongue, magnetic noise, disturbances due to tongue movements, risk of aspiration of the device, and risk of infection to the experimenter are eliminated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.