Exclusivity in physical spaces and nutrients is a prerequisite for survival of organisms, but a few species have been able to develop mutually beneficial strategies that allow them to co-habit. Here, we discovered a mutualistic mechanism between filamentous fungus, Aspergillus nidulans, and bacterium, Bacillus subtilis. The bacterial cells co-cultured with the fungus traveled along mycelia using their flagella and dispersed farther with the expansion of fungal colony, indicating that the fungal mycelia supply space for bacteria to migrate, disperse, and proliferate. Transcriptomic, genetic, molecular mass, and imaging analyses demonstrated that the bacteria reached the mycelial edge and supplied thiamine to the growing hyphae, which led to a promotion of hyphal growth. The thiamine transfer from bacteria to the thiamine non-auxotrophic fungus was directly demonstrated by stable isotope labeling. The simultaneous spatial and metabolic interactions demonstrated in this study reveal a mutualism that facilitates the communicating fungal and bacterial species to obtain an environmental niche and nutrient, respectively.
Physical spaces and nutrients are prerequisites to the survival of organisms while few interspecies mutual strategies are documented that satisfies them. Here we discovered a mutualistic mechanism between filamentous fungus and bacterium, Aspergillus nidulans and Bacillus subtilis. The bacterial cells co-cultured with the fungus traveled along mycelia depending on their flagella and dispersed farther with the expansion of fungal colony, indicating that the fungal mycelia supply space for bacteria to migrate, disperse and proliferate. Transcriptomic, genetic, molecular mass and imaging analyses demonstrated that the bacteria reach the mycelial edge and supply thiamine to the growing hyphae, resulting in a promotion of hyphal growth. The thiamine transfer from bacteria to the thiamine non-auxotrophic fungus is directly demonstrated by stable isotope labeling. The simultaneous spatial and metabolic interactions demonstrated in this study, reveal a mutualism that facilitates the communicating fungal and bacterial species to obtain environmental niche and nutrient respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.