The prognosis of patients with many types of cancers correlates with the degree of metastasis to regional lymph nodes (LNs) and vital organs. However, the mechanisms and route of cancer cell metastasis are still unclear. Previous studies determined that B-cell accumulation in tumor-draining LNs (TDLNs) induces lymphatic sinus growth (lymphangiogenesis) and increases lymph flow, which could actively promote tumor dissemination through the lymphatic system. Using young Eµ-c-Myc mice that feature LN B-cell expansion as hosts for tumor transplants, we show that subcutaneously implanted lymphomas or melanomas preferentially spread to TDLNs over non-TDLNs, thus demonstrating that these tumors initially metastasize through lymphatic rather than through hematogenous routes. In addition, the rate and amount of tumor dissemination is greater in Eµ-c-Myc mice versus wild-type hosts, which correlates with LN B-cell accumulation and lymphangiogenesis in Eµ-c-Myc hosts. The increased lymphatic dissemination in Eµ-c-Myc hosts is further associated with rapid hematogenous tumor spread of subcutaneously implanted lymphomas, suggesting that TDLN metastasis secondarily drives lymphoma spread to distant organs. In contrast, after intravenous tumor cell injection, spleen metastasis of lymphoma cells or lung metastasis of melanoma cells is similar in Eµ-c-Myc and wild-type hosts. These studies demonstrate that the effect of Eµ-c-Myc hosts to promote metastasis is limited to the lymphatic route of dissemination. TDLN B-cell accumulation, in association with lymphangiogenesis and increased lymph flow, thus significantly contributes to dissemination of lymphomas and solid tumors, providing new targets for therapeutic intervention to block metastasis.
Purpose: Colon cancer is one of the most common human malignancies, yet studies have only begun to identify the multiple mechanisms that underlie the development of this tumor. In this study, we have identified a novel mechanism, dysregulation of endocytic sorting, which promotes colon cancer development. Experimental Design: Immunohistochemical and microarray analyses were done on human colon cancer tissue specimens to determine the levels of one endocytic protein, sorting nexin 1 (SNX1). SW480 cells, a human colon cancer cell line that retains a relatively high level of SNX1 expression, were used to assess the effects of down-regulating this protein by small hairpin RNA. Activation of signal transduction cascades was evaluated in these cells using Western blotting, and multiple functional assays were done. Results: We determined by immunohistochemistry that the level of SNX1 was significantly down-regulated in 75% of human colon cancers. In corroborative studies using microarray analysis, SNX1 message was significantly decreased (log 2 ratio less than À1) for 8 of 19 colon carcinomas. Cell lines with reduced SNX1 levels showed increased proliferation, decreased apoptosis, and decreased susceptibility to anoikis. They also showed increased activation of epidermal growth factor receptor and extracellular signal-regulated kinase 1/2 in response to epidermal growth factor. This increased activation was abolished by inhibition of endocytosis. Conclusions: These data suggest that loss of SNX1 may play a significant role in the development and aggressiveness of human colon cancer, at least partially through the mechanism of increased signaling from endosomes. Further, these findings suggest that dysregulation of endocytic proteins may represent a new paradigm in the process of carcinogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.