The switching of a molecular length of azobenzene between its trans and cis forms by photoirradiation originates various photoresponsive systems in the molecular level and/or nanolevel. Recently, we and another group separately reported that some azobenzene-modified mesoporous silicas remarkably promote the release of molecules from the inside of the mesopore to the outside, when the lights, both UV and visible lights, were irradiated simultaneously. In these cases, the release rates of molecules were enhanced by the impeller-like effect of molecular motion of azobenzene moiety attributed to the continuous photoisomerization between the trans and cis isomers. This paper presents that azobenzene-substituent-tethered amorphous silica gel could promote the development of solvents in chromatography systems by photoirradiation. In column chromatography system where azobenzene-tethered silica gel was packed, the irradiation of both UV and visible lights increased the effluent rate of the developing solvents. The single irradiation of UV light scarcely enhanced the rate, while the visible light irradiation longer than 400 nm in wavelength also accelerated the development of the solvent moderately. The same kinds of phenomena were observed when this photopromoted chromatography system was applied to thin layer chromatography (TLC). Hydrocarbon developing solvents in the regions, where UV and visible lights were irradiated, moved up the TLC plate higher than those without photoirradiation. When the pyrene solution in the developing solvent was utilized in the chromatography systems, the similar photoacceleration of pyrene development was observed at the same level as the developing solvents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.