Commercially available electrodes can only provide quality surface electromyography (sEMG) measurements for a limited duration due to user discomfort and signal degradation, but in many applications, collecting sEMG data for a full day or longer is desirable to enhance clinical care. Few studies for long-term sEMG have assessed signal quality of electrodes using clinically relevant tests. The goal of this research was to evaluate flexible, gold-based epidermal sensor system (ESS) electrodes for long-term sEMG recordings. We collected sEMG and impedance data from eight subjects from ESS and standard clinical electrodes on upper extremity muscles during maximum voluntary isometric contraction tests, dynamic range of motion tests, the Jebsen Taylor Hand Function Test, and the Box & Block Test. Four additional subjects were recruited to test the stability of ESS signals over four days. Signals from the ESS and traditional electrodes were strongly correlated across tasks. Measures of signal quality, such as signal-to-noise ratio and signal-to-motion ratio, were also similar for both electrodes. Over the four-day trial, no significant decrease in signal quality was observed in the ESS electrodes, suggesting that thin, flexible electrodes may provide a robust tool that does not inhibit movement or irritate the skin for long-term measurements of muscle activity in rehabilitation and other applications.
Background:Cerebral palsy (CP) affects roughly 3 per 1000 births in the United States and is the most common pediatric developmental motor disability. Ankle foot orthoses (AFOs) are commonly prescribed to provide support and improve function for individuals with CP.Objectives:The study objective was to evaluate the lived experiences of individuals with CP and their caregivers regarding AFO access, use, and priorities. We examined experiences around the perceived purpose of AFOs, provision process, current barriers to use, and ideas for future AFO design.Study design:Secondary qualitative data analysis.Methods:Secondary data analysis was performed on semistructured focus groups that included 68 individuals with CP and 74 caregivers. Of the focus group participants, 66 mentioned AFOs (16 individuals with CP and 50 caregivers). Deidentified transcripts were analyzed using inductive coding, and the codes were consolidated into themes.Results:Four themes emerged: 1) AFO provision is a confusing and lengthy process, 2) participants want more information during AFO provision, 3) AFOs are uncomfortable and difficult to use, and 4) AFOs can benefit mobility and independence. Caregivers and individuals with CP recommended ideas such as 3D printing orthoses and education for caregivers on design choices to improve AFO design and provision.Conclusions:Individuals with CP and their caregivers found the AFO provision process frustrating but highlight that AFOs support mobility and participation. Further opportunities exist to support function and participation of people with CP by streamlining AFO provision processes, creating educational materials, and improving AFO design for comfort and ease of use.
In human-in-the-loop control systems, operators can learn to manually control dynamic machines with either hand using a combination of reactive (feedback) and predictive (feedforward) control. This paper studies the effect of handedness on learned controllers and performance during a trajectory-tracking task. In an experiment with 18 participants, subjects perform an assay of unimanual trajectory-tracking and disturbancerejection tasks through second-order machine dynamics, first with one hand then the other. To assess how hand preference (or dominance) affects learned controllers, we extend, validate, and apply a non-parametric modeling method to estimate the concurrent feedback and feedforward controllers. We find that performance improves because feedback adapts, regardless of the hand used. We do not detect statistically significant differences in performance or learned controllers between hands. Adaptation to reject disturbances arising exogenously (i.e. applied by the experimenter) and endogenously (i.e. generated by sensorimotor noise) explains observed performance improvements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.