Caenorhabditis elegans and Drosophila melanogaster are relevant models for studying the roles of glycosaminoglycans (GAG) during the development of multicellular organisms. The genome projects of these organisms have revealed the existence of multiple genes related to GAG-synthesizing enzymes. Although the putative genes encoding the enzymes that synthesize the GAG-protein linkage region have also been identified, there is no direct evidence that the GAG chains bind covalently to core proteins. This study aimed to clarify whether GAG chains in these organisms are linked to core proteins through the conventional linkage region tetrasaccharide sequence found in vertebrates and whether modifications by phosphorylation and sulfation reported for vertebrates are present also in invertebrates. The linkage region oligosaccharides were isolated from C. elegans chondroitin in addition to D. melanogaster heparan and chondroitin sulfate after digestion with the respective bacterial eliminases and were then derivatized with a fluorophore 2-aminobenzamide. Their structures were characterized by gel filtration and anion-exchange high performance liquid chromatography in conjunction with enzymatic digestion and matrix-assisted laser desorption ionization time-of-flight spectrometry, which demonstrated a uniform linkage tetrasaccharide structure of -GlcUA-Gal-Gal-Xyl-or -GlcUA-Gal-Gal-Xyl(2-O-phosphate)-for C. elegans chondroitin and D. melanogaster CS, respectively. In contrast, the unmodified and phosphorylated counterparts were demonstrated in heparan sulfate of adult flies at a molar ratio of 73:27, and in that of the immortalized D. melanogaster S2 cell line at a molar ratio of 7:93, which suggests that the linkage region in the fruit fly first becomes phosphorylated uniformly on the Xyl residue and then dephosphorylated. It has been established here that GAG chains in both C. elegans and D. melanogaster are synthesized on the core protein through the ubiquitous linkage region tetrasaccharide sequence, suggesting that indispensable functions of the linkage region in the GAG synthesis have been well conserved during evolution. Mutations affecting the genes encoding putative proteins related to GAG biosynthetic enzymes have also been described for these organisms. Mutations in the tout velu (ttv) gene of D. melanogaster cause defects in Hedgehog movement in mosaic wing discs (1, 6). The ttv gene is a putative ortholog of vertebrate EXT1, which encodes a heparan polymerase and is associated with the hereditary multiple exostoses syndrome in humans (7). The pipe gene, which affects dorsal-ventral patterning of D. melanogaster development, encodes a homolog of vertebrate HS 2-O-sulfotransferase (2, 8). The sugarless and sulfateless genes, both of which affect the fibroblast growth factor signaling during the D. melanogaster development, en-
Mutational defects in either EXT1 or EXT2 genes cause multiple exostoses, an autosomal hereditary human disorder. The EXT1 and EXT2 genes encode glycosyltransferases that play an essential role in heparan sulfate chain elongation. In this study, we have analyzed heparan sulfate synthesized by primary fibroblast cell cultures established from mice with a gene trap mutation in Ext1. The gene trap mutation results in embryonic lethality, and homozygous mice die around embryonic day 14. Metabolic labeling and immunohistochemistry revealed that Ext1 mutant fibroblasts still produced small amounts of heparan sulfate. The domain structure of the mutant heparan sulfate was conserved, and the disaccharide composition was similar to that of wild type heparan sulfate. However, a dramatic difference was seen in the polysaccharide chain length. The average molecular sizes of the heparan sulfate chains from wild type and Ext1 mutant embryonic fibroblasts were estimated to be around 70 and 20 kDa, respectively. These data suggest that not only the sulfation pattern but also the length of the heparan sulfate chains is a critical determinant of normal mouse development.
Syndecan-1, present on the surfaces of normal murine mammary gland epithelial cells, is a transmembrane hybrid proteoglycan, which bears glycosaminoglycan (GAG) side chains of heparan sulfate (HS) and chondroitin sulfate (CS). Purified syndecan-1 ectodomains were analyzed for disaccharide composition and the GAG-protein linkage region after digestion with bacterial lyases. The HS chains contained predominantly a nonsulfated unit with smaller proportions of two monosulfated, two disulfated, and a trisulfated unit, whereas CS chains were demonstrated for the first time to bear GlcUA-GalNAc(4-O-sulfate) as a major component as well as GlcUA-GalNAc, GlcUA-GalNAc(6-O-sulfate), and an E disaccharide unit GlcUA-GalNAc(4,6-O-disulfate) as minor yet appreciable components. Two kinds of linkage region tetrasaccharides, GlcUA-Gal-Gal-Xyl and GlcUA-Gal-Gal-Xyl(2-O-phosphate), were found for the HS chains in a molar ratio of 55:45. In marked contrast, an additional sulfated tetrasaccharide, GlcUA-Gal(4-Osulfate)-Gal-Xyl, was demonstrated only for the CS chains, and the unmodified phosphorylated and sulfated components were present at a molar ratio of 55:26: 19. The present study thus provided conclusive evidence for the hypothesis that 4-O-sulfation of Gal is peculiar to CS chains in contrast to the phosphorylation of Xyl, which is common to both HS and CS chains. These modifications may be required for biosynthetic maturation of the linkage region tetrasaccharide sequence, which is a prerequisite for creating the repeating disaccharide region of GAG chains and/or biosynthetic selective chain assembly of CS and HS chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.